• Title/Summary/Keyword: Compressor Work

Search Result 173, Processing Time 0.029 seconds

Start-up Noise Reduction of Reciprocating Compressor Using Cavity Resonance Analysis (공동 공진해석을 이용한 왕복동식 압축기의 기동소음 저감에 관한 연구)

  • Kim, Min-Chul;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • This work focuses on finding a method to reduce the noise of a hermetic reciprocating compressor during start-up using an acoustical analysis. The noise of compressor during start-up, which is a higher level than that of a normal operating condition, has transient and non-stationary characteristics. The acoustical analysis of compressor cavity is performed to find an effective method to reduce the noise level. In the acoustical analysis, the shape variations of frequency response function in the neighborhood of resonances are tested for three parameters: the height of remained oil, the suction position of refrigerant and the position of driving part. As a conclusion of this result, to reduce the emission noise of compressor during start-up, the height of remained oil should be kept at 16 mm, the refrigerant should be sucked at the cross point of nodal lines of X and Y directional cavity modes, and the driving part should be positioned in the center of cavity.

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Thermal Design of Cryogenic Compressor with Strategies for Keeping Performance of Micro-vibration Isolation System (미소진동저감용 진동절연기의 성능유지를 위한 극저온 냉각용 압축기 조립체 열제어 설계)

  • Oh, Hyun-Ung;Lee, Kyung-Joo;Jeong, Suk-Yong;Shin, So-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • Spaceborne pulse tube-type cryogenic compressors are widely used for space applications. To guarantee cooling performance of the compressor, mission life time and micor-vibration stability, suitable thermal control of compressor is required. Micro-vibration of the compressor is the one of the sources to degrade the pointing performance of observation satellite. In the present work, on-orbit thermal design of compressor in order not to degrade the performance of micro-vibration isolation system keeping the thermal control performance has been proposed and investigated through thermo-mechanical analysis.

Design of a Dynamic Absorber Using Permanent Magnet Force (영구자석의 자력을 이용한 동흡진기의 설계)

  • Son, Sol-San;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1064-1070
    • /
    • 2010
  • In this work, a dynamic absorber with a plate-type cantilever using magnetic force is proposed to reduce the vibration of a compressor directly. The dynamic absorber using magnetic force has some advantages of easily tuning the control frequency by adjusting the magnet spacing and obtaining wider control frequency band. The dynamic absorber is designed theoretically and tested experimentally to estimate the control frequency band. When the compressor is equipped with the dynamic absorber, the vibration of compressor and the noise level of refrigerator are reduced by 30 % and 3.2 dB respectively.

Noise Reduction of a Reciprocating Compressor in a High Frequency Range (왕복동 압축기의 고주파수 대역 소음 저감)

  • Lee, Jin Woo;Lee, Jeawon;Joo, Jae Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.521-526
    • /
    • 2004
  • This paper introduces works performed for reducing high frequency noise of a reciprocating compressor. Noise in a high frequency range strongly affects sound quality as well as increases total noise level of the compressor. In order to reduce the noise, two different works were carried out. the first work was to measure the vibration Power transferred through suspension spring and discharge pipe; and the second one was to obtain operational deflection shape from cross-power spectrum measured on shell. Based on the information, Adequate structural modification of the transfer path and shell resulted in noise reduction in a high frequency range.

  • PDF

A Study on the Heat Disspation of Air Compressor Cylinder Head by the Finite Elements Method (유한요소법에 의한 공기압축기 실린더 헤드의 방열에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-80
    • /
    • 1979
  • This study describes the conduction of heat in the discharge head of air compressor. It also gives a base for a finite elements analysis of two dimenional steady -state heat conduction in the cylinder head of air cooled type reciprocating compressor. Using a single cylinder compressor operated at a given speed, tests were made observing outside temperature, final pressure and discharge temperature of air in cylinder head. As a result, the following were obtained : (1) The rate oi heat flow from the inner surface of discharge head to outside wall reach 46. 328 kcal /h at a speed of 796rpm under the constant temperature of inlet air. (2) The compression work of air increase in accordance with temperature rise of inlet air.

  • PDF

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load (부하변화에 따른 hot-gas 바이패스 방식별 성능 비교)

  • Baek, Seung-Moon;Yoon, Jung-In;Son, Chang-Hyo;Heo, Jung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor (능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향)

  • Ma, Sang-Bum;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.

Tip Clearance Effect on Through-Flow and Performance of a Centrifugal Compressor

  • Eum, Hark-Jin;Kang, Young-Seok;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.979-989
    • /
    • 2004
  • Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency.