• 제목/요약/키워드: Compressor System

검색결과 1,076건 처리시간 0.024초

흡입공기 온도에 의한 용적형 공기 압축기 성능 변화 (Effect of the Suction Air Temperature on the Performance of a Positive Displacement Air Compressor)

  • 장지성;한승훈;지상원
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.89-94
    • /
    • 2017
  • Pneumatic systems are widely applied in various industry because it have a many advantage(low cost, high safety, etc.). Air compressors supply the working fluid to the pneumatic systems and consume a lot of electrical energy at the manufacturing site. The one of the suggested idea is to reduce the energy consumption by reducing the suction temperature of the air compressor and increasing the discharge flow rate. In this paper, the discharge flow rate and air power of the positive displacement type air compressor is simulated by changing the temperature of suction air and the relationship between the suction air temperature and the performance variation of the air compressor is analyzed. As a result, we know that as the suction temperature of air is lowered, the discharge mass flow-rate is increased, but the specific enthalpy is reduced rather than increased, which means that the power of the discharged air is not greatly increased even if lower the suction air temperature.

MVR 담수화장비용 터보 증기압축기의 개발 (Development of Turbo Steam Compressors for MVR System)

  • 오종식;성병일;현용익
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.482-486
    • /
    • 2003
  • A high-efficiency turbo steam compressor has been successfully developed for the MVR desalination system, first one in Korea. The state-of-the-art design methods using real gas properties were applied to get all the aerodynamic design results. Bull and pinion gear trains, tilting-pad bearings and investment cast impellers were developed also to be integrated into the integral gear-driven turbo steam compressor. System tests show highly efficient performance.

  • PDF

로터리 압축기 회전체-베어링계의 동적 거동해석 (Dynamic Behavior Analysis of Rotor-Bearing System for Rotary Compressor)

  • 김태학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.244-251
    • /
    • 1999
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coef-ficients of the lubrication oil film are not constant in the bearings. in this paper the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

2차원 축류압축기 블레이드의 공력설계를 위한 Navier-Stokes방정식 적용 연구 (Application of Navier-Stokes Equations to Aerodynamic Design of Two-Dimensional Axial-Flow Compressor Blades)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.15-20
    • /
    • 1998
  • An integrated computing system has been developed for a Navier-Stokes design procedure of an axial-flow compressor blades. The process is done on the four separate steps, i.e., determination of the basic profiles, generation of computational grids, cascade flow simulation and analysis of the computed results in design sense. Applications are made to the blade design of the LP compressor. Computational results are analyzed with respect to the flow-field characteristics and are compared with the expected design requirements. The present system are coupled with the design procedure of the turbomachinery blades using the Navier-Stokes technique.

  • PDF

고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석 (Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

가압형 고체산화물 연료전지 / 가스터빈 하이브리드 시스템 설계에서 터빈입구 바이패스의 효과 (Effect of Gas Bypass at Turbine Inlet on Design of a Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid System)

  • 박성구;손정락;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제11권1호
    • /
    • pp.33-39
    • /
    • 2008
  • Hybrid power generation systems combining a solid oxide fuel cell and a gas turbine is promising due to their high efficiency. In the pressurized hybrid system, the operating condition of the gas turbine may play a critical role in designing the hybrid system. In particular, prevention of surge of the compressor can be a critical issue. The existence of fuel cell between the compressor and the turbine may cause an additional pressure loss and thus compressor operating points tend to approach the surge if the original turbine inlet temperature is pursued. In this study, bypassing some of the turbine inlet gas directly to the turbine exit side is simulated. Its effects on suppressing the surge problem and change in performance characteristics are discussed.

공기 압축기의 원격 감시제어시스템 개발 (A Development of Remote Supervisory Controlling System of Air Compressor)

  • 최승현;강대규;이성근;김윤식;박영산
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.482-485
    • /
    • 1999
  • 본 논문에서는 80196KC 마이크로프로세서에 의해 제어되는 공기압축기의 원격감시제어시스템을 제안한다. 제안된 모니터링시스템에서는 RS-232 직렬 통신에 의해 원거리에서 운전되는 공기압축기를 조작하고, 그 운전 상태에 대한 데이터 확인 및 이상유무를 감시한다. 단상유도전동기에 의해 구동되는 공기압축기 시스템을 대상으로 실험한 결과 그 타당성을 확인하였다.

  • PDF

디지털 스크롤 압축기를 적용한 시스템 에어컨의 냉난방특성에 대한 실험적 연구 (Experimental Study on the Cooling and Heating Characteristics of System A/C Applying the Digital Scroll Compressor)

  • 전용호;김대훈;권영철;장근선;이윤수;문제명;윤백;홍주태
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.454-460
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C applying a digital scroll compressor, the cooling and heating capacities and COP are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. In the case of unloading compared that of loading, the consumption power of the compressor is about 11% and the capacity variation of the system A/C is within about 1%. When the system A/C is operated under the cooling and heating standard conditions, COP is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. The system A/C applying the digital scroll compressor is effective for the range with high load or the width of large load variation. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.