• Title/Summary/Keyword: Compressor Muffler

Search Result 37, Processing Time 0.022 seconds

Optimization of the multi-chamber perforated muffler for the air processing unit of the fuel cell electric vehicle (연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구)

  • Kim, Eui-Youl;Kim, Min-Soo;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.342-350
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

  • PDF

Study on Low Frequency Characteristics of Rotary Compressor (로터리 압축기 저주파 특성에 관한 연구)

  • Kwon, Byoung-Ha;Park, Sin-Kyu;Hwang, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.857-862
    • /
    • 2002
  • Compressor is a major noise source of air-conditioner. Especially, its low frequency band noise below 1000Hz is very important because it will not be attenuated by passing through the cover panel and heat exchanger in air-conditioner. The factors affecting the low frequency band noise are studied by geometric similarity along with several experiments, and the low frequency noise is closely related with the discharge holes of muffler as well as the cavity of lower shell. The low frequency band noise is significantly reduced by proposed designs.

  • PDF

An Experimental Study on the Acoustic Characteristics of a Reciprocal Compressor (냉장고용 왕복동식 압축기의 소음특성에 관한 실험적 연구)

  • 박철희;차용웅;홍성철;주재만;김영헌;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.196-201
    • /
    • 1997
  • In point of noise and vibration, it is easy to occur a noise and vibration, because the reciprocal compressor is composed of crank shaft, rod piston and etc. Therefore, it is important to understand the mechanism of reciprocal compressor. In this study, we measured the sound pressure level of compressor. There are two dominent frequencies. The first of one results from the suction part. In suction process, the suction valve flutteres, and it produces the noise of the first frequency. The other results from the structural vibration of the shell resonated by discharge pipe. Thus, to reduce the noise of compressor, it will be most efficiency to redesign muffler for the first frequency and discharge pipe for the second frequency.

  • PDF

Vibration Analysis of Compressor and Pipe Using RecurDyn (RecurDyn 을 이용한 압축기 및 배관 진동 해석)

  • Kwon, Seungmin;Son, Youngboo;Ha, Jonghun;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Recently, noise reduction in room air conditioner has been one of the most important issues as well as cooling efficiency. A rotary compressor is widely used in room air conditioners. But, the rotary compressor is the dominant vibration/noise source in an air conditioner. A number of studies have been conducted on reducing rotary compressor vibration/noise through improving muffler and resonator design. However, a noise delivering path between compressor and pipe is not fully taken into consideration. In this paper, the vibration analysis model of rotary compressor is modeled using RecurDyn and experimental validation is presented.

THE DESIGN OF COMPRESSOR MUFFLER (압축기 머플러의 설계)

  • 박성근;윤해강;조성욱;임금식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.107-111
    • /
    • 1993
  • 본 논문에서는, 특히 고효율에 따른 소음 증가문제를 해결하기 위해 실험계획법을 이용한 머플러를 설계하였고, 설계단계에서부터 시뮬레이션 검증을 통해 효율을 고려한 저소음 머플러 설계가 가능하도록 머플러의 형상을 유한요소법에 의해 모델링한 후에, 소음해석 PACKAGE인 SYSNOISE를 이용하여 전달손실(TRANSMISSON LOSS) 해석을 해석하였고, 유동해석 PACKAGE인 PHONEMICS를 이용하여 압력손실을 최소화함으로써, 효율 및 소음측면에서 기존머플러보다도 더 우수한 머플러를 설계할 수 있는 PROCEDURE를 개발하였다. 이에 따라 차후 머플러내의 냉매유동특성과 소음특성을 동시에 고려한 머플러가 설계가능하리라 생각한다.

  • PDF

Design Optimization of an Accumulator for Noise Reduction of Rotary Compressor (공조용 로터리 압축기 소음저감을 위한 어큐뮬레이터 최적설계)

  • Lee, Ui-Yoon;Kim, Bong-Joon;Lee, Jeong-Bae;Sung, Chun-Mo;Lee, Un-Seop;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.759-766
    • /
    • 2011
  • Recently, noise reduction in room air conditioners has been one of the important issues as well as cooling efficiency. The rotary compressor is the dominant noise source in an air conditioner. A number of studies have been conducted on reducing compressor noise through improving muffler and resonator design. However the noise from the accumulator, a noise delivering path between compressor and air conditioner, is not fully taken into consideration. The accumulator contains a large inner cavity, and usually generates additional resonance noise during operation. This paper aims to conduct an optimal design for reducing accumulator noise by maximizing the transmission loss within the target frequency range that represents high-order nonlinearity. Design of experiments and radial basis function neural network are used in the context of approximate meta-models, and genetic algorithm is used as an optimization tool.

A Study for Fire Examples Involved with Absorbing Material Breakaway and Electric Short in Engine Room of a Large Bus (대형 버스의 엔진룸에서 흡음재이탈 및 전기적인 단락에 관련된 화재 사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • This paper is a purpose to study the failure examples for a large bus vehicle fire. The first example, the researcher certified the fact that the absorbing material break away from the upper side of engine room because of weaken durability and the fire was produced in engine. The second example, it sought the fact that the fire breaks out by electric short because of over-load of compressor. The third example, it found the fact that the fire took place by heating of bellows upper part that was connected with muffler and exhaust manifold. The fourth example, it knew the fact that the fire occurred because of the electric short inside junction box of crash body part that was located to driver seat rightside. Therefore, the fire of a large bus occurring by decrepit of absorbing material and electric short have to thoroughgoingly manage the damage and dangerousness if it happens.