• Title/Summary/Keyword: Compressor Characteristics

Search Result 653, Processing Time 0.025 seconds

Introduction of the Magnetic Pulse Compressor (MPC) - Fundamental Review and Practical Application

  • Choi, Jae-Gu
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.484-492
    • /
    • 2010
  • Magnetic switch is a kind of saturable inductor, which utilizes nonlinearity of the magnetization curve of ferromagnetic materials. The right understanding of the saturation phenomena, magnetic properties, voltage-time product, and switching characteristics of the magnetic switch is essential in designing the magnetic pulse compressor (MPC). In this paper, the historical background of research on the MPC, fundamental physical properties of the magnetic switches, and application fields of the MPC are presented. Further, an in-depth analysis of pulse compression in series and parallel MPCs is incorporated. As practical application examples, a series MPC used for water treatments and a parallel MPC used for pulsed electric field (PEF) inactivation of bacteria are cited.

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.

Performance Test of a R134a Centrifugal Water Chiller (R134a용 터보냉동기의 성능시험)

  • 이현구;윤필현;김춘동;이용덕;정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.333-340
    • /
    • 2001
  • A centrifugal water chiller using alternative refrigerant R134a have been developed. The prototype was designed to have refrigeration capacity of 300RT. Its compressor employs a single high-speed impeller, airfoil diffuser and collector. Newly developed enhanced tubes were installed in the evaporator and the condenser to reduce the required head for the compressor. Off-design characteristics at various conditions, performance test of the compressor and analysis of the refrigeration cycle were performed. So the probability of use in part load condition was checked and the direction for revision was suggested.

  • PDF

An experimental study on rotating stall in vaneless diffuser of a centrifugal compressor (원심압축기 깃 없는 디퓨저에서의 선회실속에 관한 실험적 연구)

  • Sin, Yu-Hwan;Kim, Gwang-Ho;Son, Byeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.153-161
    • /
    • 1998
  • This study describes the results of the analysis of measured rotating stall signal in a centrifugal compressor with vaneless diffuser. Unsteady flow and rotating stall in vaneless diffuser were investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. Experiments were carried out in several impeller rotating speeds, at different radius ratios. Single hot -wire was used to study the characteristics of rotating stall. As a result, the abrupt rotating stall was detected at all measured impeller rotating speeds and the several flow coefficients which are less than 0.16. The number of the stall cell was one at all measured rotational speeds, and the rotating direction was the same as that of the impeller. As the flow rate decreased, the profile of the phase averaged radial velocity component with time changed from a sawtooth to a sine wave.

A Practical Design of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems (가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 현실적 설계)

  • Oh, Kyong-Sok;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.125-131
    • /
    • 2007
  • This paper presents guideline for a practical design of the hybrid system combining a pressurized solid oxide fuel cell and a gas turbine. Design of the hybrid system based on a virtually designed gas turbine was simulated using models for off-design operation of the gas turbine. Two system configurations, with different method for supplying reforming steam, are considered and their design characteristics are compared. A higher design cell temperature provides better system performance. However, there exists a maximum allowable design cell temperature because the operating point of the compressor approaches the surge point with increasing fuel cell temperature. Increased pressure loss at the fuel cell moves the compressor operating point toward the surge point and reduces system performance.

Performance of an inverter refrigeration system with a change of expansion devices (인버터형 냉동시스템의 팽창장치 변경에 따른 성능특성)

  • 이용택;김용찬;박윤철;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.928-936
    • /
    • 1999
  • An experimental study was performed to investigate characteristics of an inverter driven water-to-water refrigeration system with a variation of compressor frequencies and expansion devices. The frequency of a compressor varied from 30Hz to 75Hz, and performance of the systems applying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve(EEV) were measured. The load conditions were altered by varying the temperature of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test conditions were deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimum control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in an inverter refrigeration system due to active control of flow area with a change of compressor frequency and load conditions.

  • PDF

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Noise Diagram of an Automotive Turbo Charger and Its Applications (차량용 터보차져의 소음도표 작성 및 응용)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2010
  • A test facility which can simultaneously measure turbocharger operating condition variables and vibro-acoustic emission in the situations that are quite similar to real internal combustion engine operating conditions has been introduced. Using this facility, a new method sweeping from full open throttle to deep surge region along constant speed curves can be utilized instead of the stationary method that has been traditionally used to obtain turbocharger compressor maps. Data covering an extensive range of the compressor performance map have been collected and analyzed. An experimental study is performed to define a noise diagram that correlates vibro-acoustic measurements to aerothermodynamic operating conditions. An instrumentation set in the facility allows the automatic definition of the operating point on the turbine and compressor map of the turbocharger. Also, radiated sound pressure and casing vibration data corresponding to the point are obtained by a microphone in the vicinity of the compressor casing and an accelerometer on the casing. The major source(s) of noise at specific operating point on the map can be easily identified with these maps. Also, acoustic characteristics of a given turbocharger at the vicinity of the surge as well as in the surge are also defined. Finally, the possibility to define mild surge region of a turbocharger using vibro-acoustic measurements is studied.

Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor (다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성)

  • Shin, You-Hwan;Elder, Robin L;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.