• Title/Summary/Keyword: Compressive stress

Search Result 2,102, Processing Time 0.033 seconds

Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect (고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향)

  • 이지훈;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • 박경동;정재욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.58-64
    • /
    • 2004
  • The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, and -10$0^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. There is a difference between shot peened specimen and unpeened specimen. Fatigue crack growth rate of shot peened specimen was lower than that of unpeened specimen. Shot peening is improve the resistance of crack growth by fatigue that make a compressive residual stress on surface. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation. Temperature goes down, fatigue crack growth rate decreased.

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber (FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가)

  • Park, Hoy-Yul;Kang, Dong-Pil;Han, Dong-Hee;Kim, In-Sung;Pyo, Hyun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

Effects of the Residual Stress on Fracture Toughness in ZTA (ZTA에서 잔류응력이 파괴인성 증진에 미치는 영향)

  • Lee, Young-Min;Yu, Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 1990
  • In this investigation, bar-shaped specimens which consisted of three layers are prepared to study the effects of residual compressive stress on the mechanical properties in ZTA. The outer layers contained Al2O3 and unstabilized ZrO2 and the central layer contained Al2O3 and stabilized ZrO2(with 5.10wt% Y2O3). When cooled from the sintering temperature, some of zirconia in the outer layers transformed to the monoclinic form while zirconia in the central layer was retained in the tetragonal form. The transformation which induces to dilatational expansion led to the estabilishmenet of compressive stress in the outer layers and balances tensile stress in the central layer. Decrease of outer layer thickness(for a fixed total thickness)increases residual compressive stress. Because of residual compressive stress in the outer layers, the fracture toughness of outer layers of 3-layers composite is 10.21 Mpam1/2, which is increased to 25% above in comparison with 1-layer specimens in ZTA. Also, the 3-layers composite is believed to exhibite greater fracture resistance in contact damage environment from thermal shock test.

  • PDF

A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature (고온에서의 형상기억복합재료의 비파괴평가에 관한 연구)

  • Kang, Dong-Hyun;Lee, Jin-Kyung;Park, Young-Choul;Ku, Hoo-Taek;Lee, Kyu-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Effects of Sand Blasting on TiAlN Coating on WC Hard Metal Alloy Tip (WC위 TiAlN 코팅층에 미치는 Sand Blasting 처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.54-61
    • /
    • 2021
  • The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.

Fatigue Characteristics and Compressive Residual Stress of Shot Peened Alloy 600 Under High Temperature (쇼트피닝 가공된 Alloy 600 재료의 고온환경하에서의 잔류응력 및 피로특성)

  • Kim, Jong Cheon;Cho, Hong Seok;Cheong, Seong Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.333-338
    • /
    • 2013
  • The compressive residual stress and fatigue behavior of shot peened alloy 600 under a high-temperature environment is investigated in this study. Alloy 600 is used in the main parts of nuclear power plants, and the compressive residual stress induced by the shot peening process is considered to prevent SCC (stress corrosion cracking). To obtain practical results, the fatigue characteristics and compressive residual stress are evaluated under the actual operating temperature of a domestic nuclear power plant, as well as a high-temperature environment. The experimental results show that the peening effects are valid at a high temperature lower than approximately $538^{\circ}C$, which is the threshold temperature. The fatigue life was maintained at temperatures lower than $538^{\circ}C$, and the compressive residual stress at $538^{\circ}C$ was 68.2% of that at room temperature. The present results are expected to be used to obtain basic safety and reliability data.