• Title/Summary/Keyword: Compressive strength development

Search Result 1,166, Processing Time 0.028 seconds

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

Microstructure and Mechanical Properties of Alumina/Zirconia Layered Composites (알루미나/지르코니아 층상 복합체의 미세구조 및 기계적 성질)

  • Lyu, Seung-Woo;Park, Young-Min;Yang, Tae-Young;Ryu, Su-Chak;Kim, Young-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.193-197
    • /
    • 2006
  • Symmetric three-layer $Al_2O_3/ZrO_2$ composite has been prepared by freeze casting and pressureless sintering at $1400-1600^{\circ}C$ in air. The layered material sintered at $1600^{\circ}C$ showed the maximum fracture strength (410 MPa), measured by a four-point bending test. Contact damage strength was superior in three-layer composite compared with corresponding mono-layered material, possibly due to the development of relatively large compressive stress. The grain growth of $ZrO_2$ particles was mainly governed by coalescence mechanism.

THE QUALITY PROPERTIES FOR FLY ASH OF COMBINED HEAT POWER PLAINT AND MECHANANICAL PROPERTIES IN CONCRETE (열병합발전소 플라이애쉬 품질 및 콘크리트의 역학적 특성)

  • Lee, Sang-Soo;Back, Myung-Jong;Won, Cheol;Ahn, Jae-Hyen;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.69-74
    • /
    • 1995
  • The primary purpose of this study is to investigate reusal techniques of fly ash of combined heat power plant in the construction field, which may contribute to the saving of construction materials and conservating environment. Firstly chemical and physical characteristics of fly ash is analysed. And then, the usability of the concrete is tested by investigating the flowablility and stength development through parameters of various replacement ratios with respect to different mixing conditions. Finally, the durability and mechanical properties(elastic modulus) of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quantity of the CaO in the fly ash is relatively high based on the chemical analysis, (2)the compressive strength ratio of the mortar is satisfied with the specification, but the unit water ratio increased, (3)high strength concrete of more than 400kg/$\textrm{cm}^2$ can be developed in the ranges of FA 30%, W/B 40%, (5)the slump loss with the elapsed time due to the delivery is decreased as the replacement ratio of the fly ash is increased, (6)the modulus of the elasticity is matched withn the specification of the Architectural Institute of Korea.

  • PDF

Optimum Binder Ratio of Mass Concrete for LNG Tank (LNG저장시설 적용을 위한 매스콘크리트 최적 결합재 혼입율 검토)

  • Kim, Young-Jin;Park, Sang-Jun;Kim, Kyoung-Min;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The optimum binder ratio of the low heat mass concrete for LNG tank was evaluated in the present study. Three types of binder such as OPC I, ground granulated blast-furnace slag powder were mixed and were used. Also fine particle cement and activator were used to raise an early age strength development and ground limestone was used to reduce the cost. As a result of the study, mix ratio II (30:30:40) was suitable for Bottom Center and mix ratio III(40:30:30) was suitable for Roof based on compressive strength and semi-adiabatic temperature.

An experimental study of connections between I-beams and concrete filled steel tubular columns

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.303-315
    • /
    • 2004
  • Frame composed of concrete-filled steel tubular columns and I-shaped steel beam has been researched in order to development reasonable connection details. The present paper describes the results of an experimental program in four different connection details. The connection details considered include through-bolt between I-shaped steel beams and concrete-filled steel tubular columns and two details of welded connections. One of the welded connection details is stiffened by angles welded in the interior of the profile wall at the beam flange level. The specimens were tested in a cruciform loading arrangement with variable monotonic loading on the beams and constant compressive load on the column. For through-bolt details, the contribution of friction and bearing were investigated by embedding some of the bolts in the concrete. The results of the tests show that through-bolt connection details are very ductility and the bearing is not important to the behavior of these moment connections. The angles welded in the interior of the profile wall increase the strength and stiffness of the welded connection detail. In addition, the behavior curves of these connections are compared and some interesting conclusions are drawn. The results are summarized for the strength and stiffness of each connection.

An Experimental Study on the Mechanical Properties of Concrete with the Contents of Recycled coarse Aggregate (재생 굵은 골재를 사용한 재생 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 김호수;백철우;반성수;최성우;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.25-30
    • /
    • 2003
  • Owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field. By supplementing aggregate resources that are insufficient by recycling waste concrete, it is considered that the resource-preserving effect according to the saving and reuse of resource as well as eco-friendly effect that is regarded as important in recent industrial society may be expected. In this study conducted an experiment by setting up 15 levels according to the variations in the rate of substitution of recycled coarse aggregate by the water cement ratio(40, 50, 60%). As the result of it, the slump and air contents was increased by ratio of coarse aggregate, and the elapsed characteristics by the ratio of recycled coarse aggregate showed that there is no clear difference in slump and the air contents. Further, in the characteristics of strength development, the lower the water cement ratio, the higher the compressive strength at early ages, compared with crushed stone, while the compression declined according to the increase of substitution rate of recycled gravel as it was tending upward long-term ages.

  • PDF

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Manufacturing Zero-Cement Bricks by Replacing Cement with Recycled Aggregates and Blast Furnace Slag Powder

  • Park, Kyung-Taek;Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, a zero-cement brick is manufactured by replacing cement with recycled aggregates and blast furnace slag powder. Experimental tests were conducted with standard sized samples of $190{\times}57{\times}90mm$ (KS F 4004), and this manufacturing technique was simulated in practice. Results showed that the zero-cement brick with 0.35 W/B had the highest compressive strength, but the lowest absorption ratio. This absorption ratio of zero-cement brick with 0.35 W/B was lower than the required level determined by KS F 4004. Hence, to increase the absorption ratio, crushed fine aggregate (CA) and emulsified waste vegetable oil (EWO) were used in combination in the zero-cement brick. It was found that the zero-cement brick with CA of 20% and EWO of 1% had the optimum combination, in terms of having the optimum strength development (12 MPa) and the optimum absorption ratio (8.4%) that satisfies the level required by KS. In addition, it is demonstrated that for the manufacturing of zero-cement brick of 1000, this technique reduces the manufacturing cost by 5% compared with conventional cement brick.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

High Temperature Thermo-mechanical Properties of HfC Reinforced Tungsten Matrix Composites

  • Umer, Malik Adeel;Lee, Dong Ju;Ryu, Ho Jin;Hong, Soon Hyung
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2015
  • In order to improve the mechanical properties of tungsten at room and elevated temperature, hafnium carbide (HfC) reinforced tungsten matrix composites were prepared using the spark plasma sintering technique. The effect of HfC content on the compressive strength and flexural strength of the tungsten composites was investigated. Mechanical properties of the composites were also measured at elevated temperatures and their trends, with varying reinforcement volume fraction, were studied. The effect of reinforcement fraction on the thermal properties of the composites was investigated. The thermal conductivity and diffusivity of the composites decreased with increasing temperature and reinforcement volume fraction. An inherently low thermal conductivity of the reinforcement as well as interfacial losses was responsible for lower values of thermal conductivity of the composites. Values of coefficient of thermal expansion of the composites were observed to increase with HfC volume fraction.