• 제목/요약/키워드: Compressive stiffness

검색결과 401건 처리시간 0.028초

Development of a Functional Fixator System for Bone Deformity Near Joints

  • Chun, Keyoung-Jin;Lee, Ho-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.234-241
    • /
    • 2006
  • A functional external fixator system for bone deformity near the joints using worm gear was developed for curing the angle difference in fracture bones while the lengthening bar was developed for curing the differences in length, also in fracture bones. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints. The FE model using compressive and bending FE analysis was applied due to the angle differentiations. The results indicate that compressive stiffness value in the experiment was 175.43N/mm, bending stiffness value in the experiment was 259.74 N/mm, compressive stiffness value in the FEA was 188.67 N/mm, and bending stiffness value in the FEA was 285.71 N/mm. Errors between experiments and FEA were less than $10\%$ in both the 'compressive stiffness and the bending stiffness. The maximum stress (157 MPa) applied to the angle of the clamp was lower than the yield stress (176.4 MPa) of SUS316L. The degree of stiffness in both axial compression and bending of the new fixator are about 2 times greater than other products, with the exception of EBI (2003).

족관절 근위부 골교정용 기능성 체외고정장치 개발 (Development of a Functional External Fixator System for Bone Deformity near Joints in Legs)

  • 이호중;전경진
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

족관절 근위부 골교정용 기능성 체외고정장치 개발 (Development of a Functional External Fixator System for Bone Deformity near Joints in Legs)

  • 전경진;이호중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

탄성받침의 강성특성에 대한 실험연구 (A Experimental Study on the Stiffness Characteristics of Elastomeric Bearings)

  • 윤혜진;조창백;김영진;곽임종
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.475-485
    • /
    • 2008
  • 이 논문은 국내 탄성받침의 성능과 신뢰성 향상을 위한 일환으로, 탄성받침의 설계/제작/품질평가 기준인 KS F 4420의 강성 관련 개선방향을 제안하였다. 이를 위하여 KS F 4420의 압축탄성계수, 강성측정방법, 성능평가방법을 Eurocode, 일본 도로교지승편람, ISO 기준과 비교 분석하였으며, KS F 4420의 강성 제안식과 실측치와의 차이를 알아보기 위하여 국내 일반적인 탄성받침을 대상으로 수직강성과 전단강성 측정 실험을 실시하였다. 실측된 수직강성은 강성정의 방법에 따라 20%정도 차이를 나타냈으며, 전단강성은 13%정도 차이를 나타냈다. 또한 실측된 강성은 KS F 4420의 제안식과의 편차도 큰 것으로 나타났다. 교량받침이 요구되는 수직강성을 가지지 못하는 경우 교량 상부 구조물의 부등침하 및 응력집중 현상을 야기할 수 있다. 따라서 국내 받침이 설계에서 요구되는 성능을 갖기 위해서는 다양한 형상, 형상계수를 갖는 받침의 성능평가를 통하여 국내 실정에 맞는 압축탄성계수식과 성능평가기준의 마련이 필요하다고 판단된다.

체결장치의 강성 평가를 위한 실험적 연구 - 레일 연직방향 병진강성, 레일 강축에 대한 회전강성 - (An Experimental Study to Evaluate the Stiffness of Fastening Systems - Translational Stiffness along the Vertical Axis of Rail, Rotational Stiffness along the Strong Axis of Rail -)

  • 김정훈;한상윤;임남형;강영종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.71-78
    • /
    • 2008
  • 철도교량의 경우, 열차하중에 의한 영향으로 교량 단부에서 상향력이 발생하였으며, 이 상향력은 체결장치에 압축력과 인장력을 유발시켰다. 현재까지 이에 대한 안전성을 검토하기 위해 체결장치를 1방향의 스프링 요소로 모사하여 구조해석을 수행해 왔다. 이러한 경우에 스프링 요소의 강성은 압축력을 재하한 실험적 연구에 의하여 산정되었다. 따라서, 상향력은 체결장치에 압축력뿐만 아니라 인장력도 유발시키기 때문에 합리적이고 정확한 구조해석을 수행하기 위해서는 인장력을 재하한 실험적 연구로부터 산정된 병진방향 강성 그리고 회전방향 강성을 함께 고려해야 한다. 본 연구에서는 6가지 실험체에 대하여 탄성과 비탄성 실험을 수행하여 레일 연직방향 병진강성과 레일 강축에 대한 회전강성을 검토하였고, 체결장치의 구조적인 거동을 분석하였다.

철도교량 단부 상향력 해석을 위한 체결장치의 실험적 연구 (An Experimental Study of Fastening System for Analysis of Rail Uplifting on Railway Bridge Ends)

  • 김정훈;임남형;최상현;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.307-311
    • /
    • 2007
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces made the compressive and tensile forces occur in the fastening system. Therefore, the structural analysis was performed to investigate the safety of fastening system which was modeled as one directional spring element. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. For that reason, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated. Also structural behavior of the fastening system was analyzed.

  • PDF

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.

수직방향 수동 영강성 제진기의 비선형 진동 특성 (Nonlinear vibration characteristics of a vertical passive zero stiffness isolator)

  • 김경홍;안형준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1259-1265
    • /
    • 2007
  • This paper presents nonlinear vibration characteristics of a vertical passive zero stiffness isolator. The passive isolator can achieve zero stiffness through buckling of notched flexure caused by a compressive force. First, a simulation model of the isolator was built based on elastic beam theory. As increasing the compression force, time and frequency responses of the isolator were simulated. In addition, further nonlinear vibration characteristics were investigated through a bifurcation diagram and a Poincare's map, which shows that even chaostic vibration could happen. The simulations show that as the compressive force increases, the stiffness goes close to zero and the nonlinear characteristic becomes stronger to have a great effect on the isolation performance.

  • PDF

폴리우레탄 고무 스프링의 압축 강성도 추정 및 적용 (Estimation of Compressive Stiffness of Polyurethane Rubber Springs and Its Application)

  • 최은수;박승진;우대승
    • 한국강구조학회 논문집
    • /
    • 제29권3호
    • /
    • pp.229-236
    • /
    • 2017
  • 이 연구에서는 고무스프링의 동적 압축실험을 수행하여 고무스프링의 거동 및 특성을 규명하고 압축 강성도를 계산하여 실제 설계값에 대해 알아보고자 하였다. 고무스프링의 동적 압축실험을 수행하기 위하여, L80-D55, L90-D58, L100-D60의 고무스프링의 형상계수를 구하여 총 9개의 고무스프링을 주문 제작 하여 실험에 사용하였다. 실험은 고무스프링의 길이에 따라 기압축을 제어하여 수행하였으며, 기압축은 변형률의 5%, 10%, 15%, 20%, 25% 순서로 증가시켰다. 실험결과를 통해 힘-변형률 곡선을 얻을 수 있었고, 변형률의 증가함에 따라 강도감소 현상과 강도증가 현상이 발생함을 확인하였다. 또한 고무스프링의 크기와 지름에 따라 강성저하 및 강성증가 현상이 확연하게 나타남을 확인하였고, 힘-변형률 곡선에서 할선기울기를 이용하여 유효 압축강성도를 추정하였다. 유효압축강성도를 이용하여 실제 설계에 사용할 수 있는 설계값을 제시하였다.

여러 가지 조건을 가진 직물 복합재료 시편의 압축특성 (Compressive Characteristics of Fabric Composites with Various Conditions)

  • 전성식;오제훈;장승환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2004
  • Because the compressive properties such as compressive stiffness and compressive maximum strength of the fabric composite materials are essential to analyse the drape behaviour and estimate the quality of the final products, compressive tests of fabric composites with different stacking sequences were performed. Appropriate shape and dimensions for the compressive test specimens were prepared and several specimens with different conditions were tested and compared with each other.

  • PDF