• Title/Summary/Keyword: Compressive property

Search Result 590, Processing Time 0.029 seconds

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.

Compressive behavior of steel stirrups-confined square Engineered Cementitious Composite (ECC) columns

  • Zheng, Pan-deng;Guo, Zi-xiong;Hou, Wei;Lin, Guan
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.193-206
    • /
    • 2021
  • Extensive research has been conducted on the basic mechanical property and structural applications of engineered cementitious composites (ECC). Despite the high tensile ductility and high toughness of ECC, transverse steel reinforcement is still necessary to confine ECC for high performance. However, limited research has examined performance of ECC confined with practical amount of transverse reinforcement. This paper presents the results of axial compression tests on 14 square ECC columns and 4 conventional concrete columns (used as control specimens) with transverse reinforcement. The test variables were spacing, configuration (square ties or square and diamond shape ties), and yield strength of stirrups. The test showed that ECC columns confined with steel stirrup had good compressive ductility, and the stirrup spacing had the greatest effect on the compressive performance. The self-confinement effect of ECC results in a more uniform but slower expansion of the whole column compared with CC ones. The test results are then compared against the predictions from a number of existing models for conventional confined concrete. It is indicated that these models fail to predict the axial strains at peak axial stress and the trend of the stress-strain curve of steel stirrups-confined ECC with sufficient accuracy. Several new equations are then proposed for the compressive properties of steel-confined ECC based on test results and potential approaches for future studies are proposed.

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

$Cr^{6+}$ leaching property of cement using high performance lignin (고성능 혼화제를 이용한 시멘트의 $Cr^{6+}$ 용출특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.135-143
    • /
    • 2009
  • To study possibility of $Cr^{6+}$ solid solution and efficiency of admixture, leaching property of Portland cement mortar was investigated by using KSLT (Korea Standard Leaching Test), TCLP (Toxicity Characteristic Leaching Procedure), Soacking procedure, as adding excess $Cr^{6+}$. As a result, admixture of lignin type showed high compressive strength of mortar but no changing leaching property.

The Historical Analysis of Characteristics on the Clay Brick of Modern Architecture (근대 조적건축물에 이용된 점토벽돌의 재료적 특성 및 시대성 분석)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Kang, Byeung-Hee;Kim, Ki-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.23-24
    • /
    • 2011
  • The purpose of this study is suggesting a basic data for which scientific preservation and rehabilitation of future modern architecture through the analyzing property of clay brick used in modern architecture in a scientific way.The clay brick which is used in the early 1900s has even lower property than present clay brick because of poor plasticity technique at that time. It could be possible to property and effective stability examination of modern architecture from nondestructive testing is significantly associated with property.

  • PDF

A Study on the Flowing Characteristic of Concrete with Copper Smelting Slag (동제련 슬래그를 사용한 콘크리트의 경시별 유동특성에 관한 실험적 연구)

  • 김정욱;지석원;이세현;전현규;유택동;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.319-324
    • /
    • 2001
  • Recently new practical use way of industry product is required. In this study, to find flowing property of slump, unit weight, the air amount, compressive strength etc. Compressive strength 240, 270kgf/$cm^{2}$, slump 8$\pm$2.5(I), 152$\pm$.5(II)cm, mixing ratio of copper smelting slag decided by 0, 25, 50, 75, 100% gradually, The result of this study was follows ; 1. Unit weight increased 2.2%~4.4% according as mixing ratio of copper smelting slag increases. 2. Slump increased about 2~5% as the mixing ratio increased gradually 3. Compressive strength was increased about 4~28% in copper smelting slag mixing ratio 25~50% and 8~20% decreased more than mixing ratio 75%.

  • PDF

Study on hybrid sensing matrix for compressive sensing of images (영상 압축 센싱을 위한 하이브리드 센싱 행렬 연구)

  • Phan, Minh Van;Dinh, Khanh Quoc;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.230-231
    • /
    • 2014
  • Compressive sensing is a new sampling technique, which allows to sample a signal under the Nyquist-Shannon sampling rate. For block-based compressive sensing, a hybrid sensing matrix which contains low-frequency patterns in addition to the random Gaussian numbers is good for exploiting typical property of natural images. By noting that MH-BCS-SPL is well known for its good recovery performance, this paper investigates effect of the hybrid sensing matrix on MH-BCS-SPL in the sense of how large portion of low-frequency patterns can provide performance improvement.

  • PDF

Analysis of Wrinkling INitiation and Growth in Cylindrical Cup Deep Drawing Process (원형컵 디프드로잉에서의 주름발생 해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.18-21
    • /
    • 1999
  • The wrinkling of thin sheet metal induced by compressive instability is one of major defects in sheet metal forming processes. compressive instability is influence by many factors such as mechanical properties of the sheet material geometry of the sheet contact conditions and plastic anisotropy. The analysis of compressive instability in a plastically deforming body is rather difficult because the effects of the above-mentioned factors are rather complex and the instability behavior may show swide variations even for small deviations of the factors. in this work the bifurcation theory is introduced for the finite elemental analysis of the instability behavior of a thin sheet with initially sound geometry and property. All the above-mentioned factors are conveniently considered by the finite element method. The instability limit is found by introducing a criterion scheme into the incremental analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme. Wrinkling initiation and growth in the deep drawing process are analyzed.

  • PDF

A Dimensionless Index for Quantitative Evaluation of Apple Freshness

  • Cho, Y.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 2000
  • Though the freshness for agricultural products is an important factor related to their quality management, this terminology is being used restrictedly because it is very subjective. In this study, a dimensionless index which had the span of the maximum of 1 through the minimum of 0 was proposed to describe freshness of the product with time-variant quality and was applied to Tsugaru and Fuji apples. First, the compressive properties having the linearity in their change regarding time elapsed after harvest were selected. For Tsugaru apple, bio-yield and rupture forces had high correlation with time while for Fuji, bio-yield and rupture deformations had high correlations. When the slope, or ratio of force to deformation, was considered, the effect of cultivar could be neglected. When the linearly time-variant compressive properties for Tsugaru and Fuji apples were involved in the freshness indices, they described well freshness of apples. Also, the freshness decay constant depicted a characteristic which related to freshness decay rate. Therefore, the freshness index can be utilized to manage the quality during storage and distribution of apples.

  • PDF

Fundamental Properties of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 기초물성에 대하여)

  • Kim, Jin-Cheol;Jeong, Yong;Park, Sung-Hak;Park, Ki-Cheong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.1-7
    • /
    • 1995
  • The objective of this experimental investigation was to examine the fundamental properties of antiwashout underwater concrete. Expriments were conducted on the antiwashout property in underwater, the compressive strength in the air and in underwater, setting time, slump flow loss. As a result, a dosage of 2.0-2.5kg/$\textrm{m}^3$ antiwashout admixture was found to be appropriate not to cause water pollution and to provide a reliably good compressive strength in underwater concrete. Also, the experimental results showed that the amount of less than 50mg/$\ell$ suspended solid was required to obtain the underwater to air compressive strength ratio of more than 80%

  • PDF