• Title/Summary/Keyword: Compression-Only

Search Result 937, Processing Time 0.026 seconds

Experiment Research of Autonomous Driving Valve for Pulse Detonation Rocket Engine

  • Matsuoka, Ken;Yamaguchi, Hiroyuki;Nemoto, Toyoshi;Yageta, Jun;Kasahara, Jiro;Yajima, Takashi;Kojima, Takayuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.419-426
    • /
    • 2008
  • As pulse detonation engine(PDE) does not need compression mechanisms such as compressors because self-sustained detonation waves are able to compress propellant gases by their incident shock waves, the PDE can have a simple straight-tube structure. In this study, we propose an autonomous driving valve system of the PDE, which fill premixed gases into the PDE tubes at high frequency with high mass flow rate. The proposed valve is composed of only three parts: a piston, a cylinder, and a spring. This valve system can produce intermittent flow at high mass flow rate, and also can keep stable reciprocal motion by using the propellant-gas enthalpy. When the cylinder content product is assumed to be constant, experimental results of the mass flow rate were approximately equal to the calculation model. We confirmed the autonomous driving valve performance by experiments, and concluded that this extremely simple valve with no electrical power and controller can be used as the PDE propellant supply system.

  • PDF

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

An elastoplastic model for structured clays

  • Chen, Bo;Xu, Qiang;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.213-231
    • /
    • 2014
  • An elastoplastic model for structured clays, which is formulated based on the fact that the difference in mechanical behavior of structured and reconstituted clays is caused by the change of fabric in the post-yield deformation range, is present in this paper. This model is developed from an elastoplastic model for overconsolidated reconstituted clays, by considering that the variation in the yield surface of structured clays is similar to that of overconsolidated reconstituted clays. However, in order to describe the mechanical behavior of structured clays with precision, the model takes the bonding and parabolic strength envelope into consideration. Compared with the Cam-clay model, only two new parameters are required in the model for structured clays, which can be determined from isotropic compression and triaxial shear tests at different confining pressures. The comparison of model predictions and results of drained and undrained triaxial shear tests on four different marine clays shows that the model can capture reasonable well the strength and deformation characteristics of structured clays, including negative and positive dilatancy, strain-hardening and softening during shearing.

A Research on the Shotcrete Tunnel Application to Concrete mixing PET Fiber (PET FIBER를 혼입한 콘크리트의 숏크리트 터널 적용에 관한 연구)

  • Kim, Joo-Seok;Yoo, Sang-Geon;Lee, Yong-Jun;Shin, Hyum-Seong;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.928-934
    • /
    • 2008
  • Resently, Fiber Reinforced Concrete is used for not only preventing crack of concrete but also reinforcing general methods. Steel Fiber and PP(poly-propylene) Fiber are usually used as fiber reinforced materials. However, using these materials for shotcrete on Railway tunnel can cause some problems such as damage of pressure hose and shotcrete rebound. In addition, Steel fiber is an expensive material and it can cause safety problems during applying to shotcrete. PP Fiber can cause a problem in fiber balling during applying to shotcrete railway tunnel construction. A purpose of the research is applying a development of PET(Poly Etylene Terephtalate) fiber by recycling pet bottles to the shotcrete tunnel exposed to explosion spalling. To investigate the reinforcement effect of the PET fiber, some basic tests are accomplished to physical properties and explosion spalling by fire. As a result of the tests, a concrete mixing the PET fiber has stronger resistance effect in the explosion spalling by high temperature than another strong fiber concrete does, and that the former concrete is also equal or more effective on the result of the above tests to physical properties like compression and strain than the latter one is demonstrated.

  • PDF

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Effects of Powder Shape and Densification Mechanism on the Microstructures and Mechanical Properties of Ti-6Al-4V Components (타이타늄 합금 분말 형상 및 치밀화 기구에 따른 미세조직 및 기계적 물성 영향 연구)

  • Kim, Youngmoo;Kwon, Young-Sam;Song, Young-Beom;Lee, Sung Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.311-318
    • /
    • 2019
  • The objective of this study is to investigate the influence of powder shape and densification mechanism on the microstructure and mechanical properties of Ti-6Al-4V components. BE powders are uniaxially and isostatically pressed, and PA ones are injection molded because of their high strengths. The isostatically compacted samples exhibit a density of 80%, which is higher than those of other samples, because hydrostatic compression can lead to higher strain hardening. Owing to the higher green density, the density of BE-CS (97%) is found to be as high as that of other samples (BE-DS (95%) and P-S (94%)). Furthermore, we have found that BE powders can be consolidated by sintering densification and chemical homogenization, whereas PA ones can be consolidated only by simple densification. After sintering, BE-CS and P-S are hot isostatically pressed and BE-DS is hot forged to remove residual pores in the sintered samples. Apparent microstructural evolution is not observed in BE-CSH and P-SH. Moreover, BE-DSF exhibits significantly fine grains and high density of low-angle grain boundaries. Thus, these microstructures provide Ti-6Al-4V components with enhanced mechanical properties (tensile strength of 1179 MPa).

Fast Algorithm for 360-degree Videos Based on the Prediction of Cu Depth Range and Fast Mode Decision

  • Zhang, Mengmeng;Zhang, Jing;Liu, Zhi;Mao, Fuqi;Yue, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3165-3181
    • /
    • 2019
  • Spherical videos, which are also called 360-degree videos, have become increasingly popular due to the rapid development of virtual reality technology. However, the large amount of data in such videos is a huge challenge for existing transmission system. To use the existing encode framework, it should be converted into a 2D image plane by using a specific projection format, e.g. the equi-rectangular projection (ERP) format. The existing high-efficiency video coding standard (HEVC) can effectively compress video content, but its enormous computational complexity makes the time spent on compressing high-frame-rate and high-resolution 360-degree videos disproportionate to the benefits of compression. Focusing on the ERP format characteristics of 360-degree videos, this work develops a fast decision algorithm for predicting the coding unit depth interval and adaptive mode decision for intra prediction mode. The algorithm makes full use of the video characteristics of the ERP format by dealing with pole and equatorial areas separately. It sets different reference blocks and determination conditions according to the degree of stretching, which can reduce the coding time while ensuring the quality. Compared with the original reference software HM-16.16, the proposed algorithm can reduce time consumption by 39.3% in the all-intra configuration, and the BD-rate increases by only 0.84%.

Light Field Image Compression using Versatile Video Coding Intra Prediction (VVC 인트라 부호화기술을 이용한 라이트필드 영상 부호화)

  • Duong, Vinh Van;Nguyen, Thuc Huu;Lee, Jaelin;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.222-224
    • /
    • 2019
  • Light Field (LF) camera captures not only the light intensity but also the light direction coming to camera. While the rich information captured by LF camera enables many interesting applications such as digital refocusing, viewpoint changing, and 3D reconstruction, but it also requires powerful coding tools to reduce its large volume of data. In this paper, we investigate using the intra prediction scheme of the versatile video coding (VVC), which is the most recent video coding technology currently under developing, to compress the LF image. The Intra Block Copy (IBC) technique in VVC is exploited considering special LF image structure. The experimental result shows that VVC intra predict ion outperforms the H.265/HEVC intra coding technique in encoding LF data irrespective of using the IBC mode or not.

  • PDF

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.