• Title/Summary/Keyword: Compression-Ignition Engine

Search Result 290, Processing Time 0.028 seconds

Study on Spray and Exhaust Emission Characteristics of DME-Biodiesel Blended Fuel in Compression Ignition Engine (압축착화기관에서 DME-바이오디젤 혼합연료의 분무 및 배기 특성에 관한 연구)

  • Cha, June-Pyo;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The purpose of this study is to investigate experimentally the spray-atomization and combustion-emission characteristics of biodiesel-DME blended fuel. In this study, two types of test fuels pure biodiesel (BD100) and blended fuel (B-DME20) were used, and the spray and combustion characteristics of different fuel compositions were analyzed. DME constitutes 20% and biodiesel constitutes 80% (by mass fraction) of the blended fuel. The overall spray characteristics, spray tip penetration, and cone angle were evaluated using frozen spray images. In addition, the combustion and emission characteristics were analyzed on the basis of the evaluated data for a single-cylinder CI engine with common-rail injection system. It was revealed that the injection profiles of both the test fuels for a given injection pressure showed similar trends. However, the injection profiles of the blended fuel (B-DME20) indicated shorter ignition delay than those of biodiesel.

Determination of the Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel by Additives (첨가제에 따른 경유연료의 세탄가 유도세탄가 및 세탄지수 분석)

  • Lim, Young-Kwan;Kim, Jong-Ryeol;Jung, Choong-Sup;Yim, Eui Soon;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.375-381
    • /
    • 2010
  • Cetane number of diesel fuel for compression ignition engine is one of main properties for fuel ignition quality. Recently the cetane index has been replaced the cetane number in order to resolve the disadvantage of CFR engine test, but these two value have slightly difference values due to addition of various additives. In this study, we analyzed the cetane number, derived cetane number and cetane index for diesel fuel which was blended with various ratios of biodiesel, kerosene and cetane improver as additives. As a result, Cetane number showed the similar value with derived cetane number, but cetane index showed quite different value with cetane number when biodiesel and cetane improver were used as additives.

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil - (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 -)

  • Lim, Jae-Keun;Choi, Soon-Youl;Kim, Suk-Joon;Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • We have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel without change of engine structure in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine. Especially this biodisel was produced from rape oil at our laboratory by ourselves. This study showed that specific fuel consumption and NOx emission were slightly increased, on the other hand CO emission and Soot were tolerably decreased more in the case of biodiesel blends than neat diesel oil.

  • PDF

Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel (예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine (GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구)

  • Kim, K.B.;Song, M.J.;Kim, K.S.;Kang, S.H.;Lee, Y.H.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

Effect of Injection Pressure on Low Temperature Combustion in CI Engines (압축착화 엔진에서 분사압이 저온연소에 미치는 영향)

  • Jang, Jaehoon;Lee, Sunyoup;Lee, Yonggyu;Oh, Seungmook;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

Performance of a Screw Press to Extract Soybean Oil and Quality of the Oil as a Fuel (스크류 프레스의 대두유(大豆油) 착유(搾油) 성능(性能)과 착유유(搾油油)의 연료(燃料) 성질(性質))

  • Suh, S.R.;Harris, F.D.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-54
    • /
    • 1985
  • Performance of a screw press was investigated experimentally with soybeans of various temperatures in order to find out a proper temperature of soybean to extract the oil by the mechanical method. Crude oil extracted by the screw press was chemically analyzed to determine a level of processing the oil for the oil to be used as a fuel for a compression ignition engine. The crude oil was degummed and dried by a plant type laboratory experimental setup to decide whether the processes are effective to improve quality of the oil as a fuel. The degummed oil and the degummed and dried oil were also chemically analyzed and were compared with the crude oil and the commercially degummed and dried soybean oil. The results are as follows: 1. In extraction of soybean oil by a screw press, heating soybeans is effective to increase oil production and to decrease energy consumption of the press. A proper temperature of soybean to extract the oil by the press was determined as about $50^{\circ}C$. 2. Soybean oil production and electric energy consumption of the press are about 83 ml and 58 Wh per 1 kg of soybeans heated to about $50^{\circ}C$, respectively. 3. The quality of crude oil produced by the press is similar to that of the commercially degummed and dried oil. The crude oil does not need to be degummed or dried for use as an engine fuel.

  • PDF

Effect of Operation Condition on the Characteristics of Combustion and Exhaust Emissions in a Gasoline Fueled HCCI Diesel Engine (가솔린 균일 예혼합 압축 착화 디젤기관의 연소 및 배기 특성에 미치는 운전조건의 영향)

  • 이창식;김명윤;황석준;김대식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To from homogeneous charge before intake manifold, the premixed gasoline fuel is injected into a premixed tank by fuel injection system and the premixed gasoline fuel is ignited by direct injected diesel fuel. Experimental result shows the NOx and soot emissions are decreased linearly with the increase of premixed ratio. In the case of intake air temperature $20^{\circ}C$ with light load, the specific fuel consumptions are increased with the rise of premixed ratio and HC and CO emissions are also increased. But the intake air heating can improve the specific fuel consumption at light load condition because increased air temperature promotes the combustion of premixed mixture. In the case of high intake air temperature with high load condition, premixed fuel is auto-ignited before diesel combustion and soot emission is increased.