• Title/Summary/Keyword: Compression zone

Search Result 236, Processing Time 0.032 seconds

Resolution of Isolated Unilateral Hypoglossal Nerve Palsy Following Microvascular Decompression of the Intracranial Vertebral Artery

  • Cheong, Jin-Hwan;Kim, Jae-Min;Yang, Moon-Sul;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.3
    • /
    • pp.167-170
    • /
    • 2011
  • Isolated hypoglossal nerve paresis due to mechanical compression from a vascular lesion is very rare. We present a case of a 32-year-old man who presented with spontaneous abrupt-onset dysarthria, swallowing difficulty and left-sided tongue atrophy. Brain computed tomographic angiography and magnetic resonance imaging of the brainstem demonstrated an abnormal course of the left vertebral artery compressing the medulla oblongata at the exit zone of the hypoglossal rootlets that was relieved by microvascular decompression of the offending intracranial vertebral artery. This case supports the hypothesis that hypoglossal nerve palsy can be due to nerve stretching and compression by a pulsating normal vertebral artery. Microvascular decompression of the intracranial nerve and careful evaluation of the imaging studies can resolve unexpected isolated hypoglossal nerve palsy.

Experimental Studies of the Forming Process for the Tubular Hydroforming Technology (관재 하이드로 포밍에 의한 성형 공정의 실험적 연구)

  • 김성태;임성언;이택근;김영석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this paper, we developed the hydroforming simulator which can apply an axial compressive force and high internal pressure to bulge a tube. Experimental dtudies have been performed to investigate the effect of each parameters such as internal pressure and axial compression stroke required for the forming of circular components. Under the improper forming conditions there were two forming failures. One was the axial buckling due to excessive axial compressive load and the other was the circumferential necking fracture due to relatively high internal pressure. A safe forming zone without any failures exists between these two extreme zones. Also the condition of forming failure such as fracture is examined throughout the theoretical analysis. This paper covers a brief overview of the mechanism of hydroforming process as well as the design of die and tools.

  • PDF

The Effect of Recycled Coarse Aggregates Replacement Level on Localized Fracture and Acoustic Emission of Concrete in Compression (순환굵은골재 치환율에 따른 콘크리트의 압축파괴 및 음향방출특성)

  • Kim, Yun-Su;Yun, Hyun-Do;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.249-252
    • /
    • 2006
  • When concrete is subjected to uniaxial compression, the failure process is normally initialed from a localized zone. The localization of failure governs structural behaviors of concrete. In this paper, the compressive strength and failure behavior of recycled coarse aggregate concrete with different replacement level of recycled coarse aggregates are investigated using acoustic emission(AE). AE characteristics of concrete were investigated during the entire loading period. For these purpose, four recycled coarse aggregate replacement level (i.e 0%, 30%, 60% and 100%) were considered in this paper. Result from this study show AE signal, AE method can apply to investigate a compressive failure mode according to recycled coarse replacement level.

  • PDF

Simulation of the single-cylinder 2-stroke cycle compression ignition engine (단기통 2사이클 압축점화기관의 시뮬레이션)

  • 유병철;김정순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.62-74
    • /
    • 1986
  • The simulation of power cycle and unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 2-stroke cycle compression ignition engine was studied in this paper. In power cycle process, the single-zone model proposed by Whitehouse and Way was used, and the convective and radiative heat transfer from cylinder contents to surroundings was considered. To solve the equations for gas exchange process, the generalized method of characteristics including area change, friction, heat transfer and entropy gradients was used. Also with the path line calculation, the entropy change along the path line and the variation of specific heat due to the change of temperature and the composition of cylinder gas were considered. As a result of the simulation, the change of pressure and temperature in the cylinder against the crank angle, the rate of net heat release, and the change of properties at each point in the inlet and exhaust pipe against the crank angle were obtained. The engine performances under various operating conditions were also calculated.

  • PDF

Fatigue Crack Propagation Behaviors on Tensile and Compression Residual Stresses in Weld Zone (용접부의 인장 및 압축잔류응력에 관한 피로균열 전파거동)

  • 이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.13-21
    • /
    • 1994
  • Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.

  • PDF

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Development History of Neotectonic Fault Zone in the Singye-ri Valley, Oedong-eup, Gyeongju, Korea (경주시 외동읍 신계리 계곡에 발달하는 신기 단층대 발달사)

  • Kang, Ji-Hoon;Son, Moon;Ryoo, Chung-Ryul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • The Ulsan Fault Zone (UFZ) of NNW trend is developed in the Gyeongsang Basin, the southeastern part of the Korean Peninsula, and the Quaternary faults have been found around the UFZ. The faults generally thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits. They mainly show the reverse-slip sense of top-to-the west movement. The lines connecting the their outcrop sites show a zigzag-form which is similar to the orientation of their fault surfaces which show the various trends, like (W)NW, N-S, (E)NE, ENE trends. The E-W trending dextral strike(-slip) fault is found in the Quaternary deposits of the Singye-ri valley. It cuts the N-S trending reverse fault and are cut by the N-S trending thrust fault again. Two types of at least two times of Quaternary tectonic movements related to the formation of neotectonic fault zone in the Singye-ri valley are considered from such the geometric and kinematic characteristics of Quaternary faults. One is the reverse faulting of N-S trend by the E-W directed 1st compression and associated the strike-slip tear faulting of E-W trend, and then the thrust faulting of N-S trend by the E-W directed 2nd compression. The other is the reverse faulting of N-S trend, and then the dextral strike-slip faulting of E-W trend by the NW-SE directed compression, and then the thrust faulting of N-S trend. In this paper is suggested the development history of Singye-ri neotectonic fault zone on the basis of the various orientations of Quaternary fault surfaces around the UFZ, and the zigzag-form connecting line of their outcrop sites, and the compressive arc-shaped lineaments which convex to the west reported recently in the Yangsan Fault Zone.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Diagnostic Usefulness of CISS Image in Preoperative Evaluation of Trigeminal Neuralgia and Hemifacial Spasm (삼차신경통과 반측안면경련에서 CISS 영상의 진단적 유용성)

  • Lee, Dong Hoon;Lee, Sang Weon;Choi, Chang Hwa
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.2
    • /
    • pp.186-193
    • /
    • 2001
  • Objectives : Trigeminal neuralgia and hemifacial spasm are caused by vascular compression of the REZ(root entry or exit zone) of the 5th and the 7th cranial nerve. Preoperative detection of neurovascular compression is essential for accurate diagnosis, appropriate treatment, and the good operative results. Three dimensional Fourier Transformation-Constructive Interference in Steady State(3DFT-CISS) images are known to give good contrast between CSF, nerve, and vessels. We applied a 3DFT-CISS imaging technique for the preoperative evaluation of patients with these diseases and estimated the diagnostic accuracy and usefulness of this study. Methods : A series of 71 patients with trigeminal neuralgia and hemifacial spasm were treated by microvascular decompression. Among them 34 patients with trigeminal neuralgia and 24 patients with hemifacial spasm had preoperative CISS images. We compared the radiologic finding with the operative finding, and analysed the diagnostic usefulness of 3DFT-CISS imaging. Results : The sensitivity of CISS images of detecting the neurovascular compression was 90.3% in trigeminal neuralgia and 100% in hemifacial spasm. There were one false-positive and three false-negative cases in trigeminal neuralgia, and one false-positive case in hemifacial spasm. The accuracy in diagnosing the causative vessel was 73.5% in trigeminal neuralgia and 83.3% in hemifacial spasm. Conclusion : CISS image is very useful diagnostic tool for preoperative evaluation of neurovascular compression in patients with trigeminal neuralgia and hemifacial spasm. No additional neuroradiologic examination other than CISS image and MRA is needed for preoperative evaluation of patients with trigeminal neuralgia and hemifacial spasm.

  • PDF

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.