• 제목/요약/키워드: Compression wave

검색결과 270건 처리시간 0.029초

터널을 주행하는 열차의 풍압에 대한 특성해법 해석 (Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel)

  • 남성원;권혁빈;윤수환
    • 한국철도학회논문집
    • /
    • 제15권5호
    • /
    • pp.436-441
    • /
    • 2012
  • 열차가 터널에 고속으로 진입하면, 압력파가 발생한다. 열차 선두부의 진입에 의하여 발생한 압축파는 터널을 따라 진행되어 터널 출구에서 반사되어 팽창파로 되돌아오며, 후미부의 진입에 의하여 발생한 팽창파도 터널을 따라 전파되어 터널 출구에서 압축파로 반사되어 터널 입구로 되돌아 온다. 열차 선두부 및 후미부에 의하여 발생한 이러한 압력파는 터널 입구 및 출구에서 각각 반사되어 터널 내부를 왕복하며, 차량 객실에 탑승한 승객들에게는 이명감을 일으키고, 터널 출구에서는 환경소음의 일종인 미기압파를 발생시킨다. 터널에서의 큰 압력 변동은 터널의 최적 단면적 설계에도 주요 인자로 고려되고 있으며, 차체의 반복 피로 하중으로 작용하므로, 이에 대한 정량적 및 정성적 분석이 필요하다. 본 연구에서는 고정 격자계를 이용한 특성 해법을 개발하였으며, KTX를 이용한 실차 시험 결과와 비교하였으며, 해석 결과는 시험 결과와 잘 일치하였다.

실트질 세립토의 전단파속도와 비배수 전단강도 및 밀도의 상관관계 (Relationship between Shear Wave Velocity, Undrained Shear Strength and Density of Normally Consolidated Silt)

  • 박동선;오상훈;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.318-326
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of soft soils. To expand its use to estimate undrained shear strength and density, correlations between those and shear wave velocity were being attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a soft ground site near Incheon, Korea. Also, undisturbed samples were obtained and shear wave velocities of the samples were measured as well as undrained shear strength, using triaxial compression test and bender elements. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

  • PDF

Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry

  • Shin, Sung Woo;Lee, Jiyong;Kim, Jeong-Su;Shin, Joonwoo
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.73-89
    • /
    • 2016
  • The stress dependence of ultrasonic wave velocity is known as the acoustoelastic effect. This effect is useful for stress monitoring if the acoustoelastic coefficient of a subject medium is known. The acoustoelastic coefficients of metallic materials such as steel have been studied widely. However, the acoustoelastic coefficient of concrete has not been well understood yet. Basic constituents of concrete are water, cement, and aggregates. The mix proportion of those constituents greatly affects many mechanical and physical properties of concrete and so does the acoustoelastic coefficient of concrete. In this study, influence of the water-cement ratio (w/c ratio) and the fine-coarse aggregates ratio (fa/ta ratio) on the acoustoelastic coefficient of concrete was investigated. The w/c and the fa/ta ratios are important parameters in mix design and affect wave behaviors in concrete. Load-controlled uni-axial compression tests were performed on concrete specimens. Ultrasonic wave measurements were also performed during the compression tests. The stretching coda wave interferometry method was used to obtain the relative velocity change of ultrasonic waves with respect to the stress level of the specimens. From the experimental results, it was found that the w/c ratio greatly affects the acoustoelastic coefficient while the fa/ta ratio does not. The acoustoelastic coefficient increased from $0.003073MPa^{-1}$ to $0.005553MPa^{-1}$ when the w/c ratio was increased from 0.4 to 0.5. On the other hand, the acoustoelastic coefficient changed in small from $0.003606MPa^{-1}$ to $0.003801MPa^{-1}$ when the fa/ta ratio was increased from 0.3 to 0.5. Finally, it was also found that the relative velocity change has a linear relationship with the stress level of concrete.

가변 헬름홀츠 공진기가 다기통 디젤기관의 체적효율에 미치는 영향 (The Effects of Tunable Helmholtz Resonators on the Volumetric Efficiency in a Multi-cylinder Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.26-32
    • /
    • 2005
  • The volumetric efficiency is significantly affected by the behavior of pressure wave in induction system and exhaust pipe. By the motion of the piston, there exist pressure fluctuation in induction system which produce waves. Waves are propagated along a pipe bi-directional as they propagated through it, making compression wave and rare-faction(expansion) wave. These wave phenomena can affect to the volumetric efficiency. As a method of improvement of the volumetric efficiency, fuel economy and pollutant emission reduction particularly in low engine speeds, a side-branch additional tunable helmholtz resonator on the secondary pipe of intake system is proposed by use of their acoustic vibrations. Some of results are presented which deal with their physical phenomena for the wave action of intake system in a four-stroke three cylinders diesel engine.

  • PDF

Electrocardiogram Signal Compression with Reconstruction via Radial Basis Function Interpolation Based on the Vertex

  • Ryu, Chunha;Kim, Tae-Hun;Kim, Jungjoon;Choi, Byung-Jae;Park, Kil-Houm
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.31-38
    • /
    • 2013
  • Patients with heart disease need long-term monitoring of the electrocardiogram (ECG) signal using a portable electrocardiograph. This trend requires the miniaturization of data storage and faster transmission to medical doctors for diagnosis. The ECG signal needs to be utilized for efficient storage, processing and transmission, and its data must contain the important components for diagnosis, such as the P wave, QRS-complex, and T wave. In this study, we select the vertex which has a larger curvature value than the threshold value for compression. Then, we reconstruct the compressed signal using by radial basis function interpolation. This technique guarantees a lower percentage of root mean square difference with respect to the extracted sample points and preserves all the important features of the ECG signal. Its effectiveness has been demonstrated in the experiment using the Massachusetts Institute of Technology and Boston's Beth Israel Hospital arrhythmia database.

열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 (A Numerical Study on the Compression Wave Generated by the Train Entering a Tunnel)

  • 김사량
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.17-21
    • /
    • 2006
  • The numerical simulations on the train entering a tunnel were performed by solving unsteady axi-symmetric problems. In the case that 5th order velocity profile is used to reduce the effects of the pressure wave generated by the train starting abruptly, the effect of the initial distance between the train and the tunnel were examined. The impulsive start gives undesired pressure disturbances to the flow field including inside the tunnel. But 5th order velocity profile with initial distance more than 80 m gives much stable pressure variance in time, and pressure distribution inside the tunnel in space. The distance to the train reaches the highest running velocity from the start should be more than 80 m when the train speed is 350 km/h.

초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작 (Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

4행정 가솔린 엔진의 배기관 형상에 따른 압력 변동 특성 (Characteristics on the Pressure Variations According to the Exhaust Pipe Shape of 4-Stroke Gasoline Engine)

  • 이효덕;최석천;고대권;이철재;정효민;정한식
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2004
  • In this study. an experimental study has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths to measure the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased.

  • PDF

압축강도 평가를 위한 지능형 응력예측기 구축 (Construction of the Intelligence Stress Predictor for Compression Strength Evaluation)

  • 박원규;우영환;이종구;윤인식
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.