• Title/Summary/Keyword: Compression type anchor

Search Result 18, Processing Time 0.024 seconds

Experimental Study on Pullout Behavior of Composite Type Ground Anchor (복합형 앵커의 인발거동에 관한 실험적 연구)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.143-155
    • /
    • 2008
  • Ground anchors are classified depending on the kind of stress the grout is subjected to. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. In this study a composite type anchor that possesses both the tension and compression mechanism was developed. For field tests, strain gauges were installed inside the anchor body in soft: soil. From the strain monitoring results, pull-out resistance mechanism that possesses both tension and compression strain was seen.

Development of Composite Tension.Compression Anchor System based on the pull out resistance characteristics of Ground Anchor (지반앵커의 인발저항 특성에 따른 인장.압축 복합 시스템 개발)

  • Yeom, Ho-Hyeong;Im, Jong-Chul;Hong, Seok-Woo;Kim, Chul-Ung;Shin, Chul-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.788-795
    • /
    • 2005
  • In this study, the progressive failure and creep of the traditional ground anchor structure were decreased and a new ground anchor that can attain the required pull-out resistance even in soft sandy soils with low confining pressure was developed. Ground anchors are classified depending on the kind of stress the grout is subjected. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. The ground anchor that possesses both the tension and compression mechanism mentioned above is known as composition anchor. It is the objective of this study to develope this type of composition anchor. The structure of the newly developed ground anchor was presented. Pull-out test in different types of soil and the behaviour during Pull-out test was also presented.

  • PDF

An Experimental Study on the Performance of Compression-type Anchor with various inner shapes for CFRP Tendons (CFRP 긴장재용 압착식 정착구의 내부형상별 정착성능 실험 연구)

  • Jung, Woo-Tak;Lee, Seung-Joo;Park, Young-Hwan;Hwang, Geum-Sic
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • This paper presents the results of the performance of compression-type anchor for CFRP tendon. As the results of previous tests, the principal variables for enhancing performance of anchor were sleeve dimensions, inserts, compression pressure, etc. A total of 18 specimens were tested for the performance of compression-type anchor with various inner shapes. Test results revealed that the length of sleeve increased along with the performance of anchor up to 18-22%. Also, the performance of anchor was susceptible to the length of sleeve compared to the surface treatment with the oxide.

  • PDF

Development of Removable-Strand Compression Anchor (압축형 제거 앵커의 개발 및 성능 평가)

  • 김낙경;김성규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.339-346
    • /
    • 2001
  • For temporary excavation support in private land area, the strand of ground anchor should be removed In order to get permission to install anchors. The extractable or removable-strand compression anchor system was developed and evaluated by a series of pull-out load tests. Anchor pull-out tests were performed on seven instrumented full-scale low-pressure grouted anchors installed in weathered soil at the Geotechnical Experimentation Site at Sungkyunkwan University, Four anchors are the compression type anchors and three are the tension anchors. Performance test, creep test, and long term relaxation test were performed and presented. Load distributor was developed in order to distribute large compressive stresses in grout.

  • PDF

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.