• Title/Summary/Keyword: Compression stress

Search Result 1,480, Processing Time 0.027 seconds

The Unsaturated Stress Strain Behavior of CDG (Completely Decomposed Granite) Soils (완전 풍화된 화강풍화토의 불포화 응력-변형률 거동 특성)

  • Ham, Tae-Gew;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.21-28
    • /
    • 2010
  • Decomposed granite soil is the most common type of soils. The measurement of the stress-strain-strength behavior of anisotropic decomposed granite soils is very important for the deformation and stability analysis of slopes, retaining walls, excavations. A series of unsaturated-drained triaxial compression tests were performed to know unsaturated strength properties. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane): 0, 45 and 90 degrees. The compression strain of specimens subjected to an isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clearly shown with low confining stress. The effect of the sedimentation angle on the compressive strength and deformation was more evident in saturated specimens. A new method of predicting the shear strength of unsaturated decomposed granite soils, considering compaction angles, was proposed.

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests (진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가)

  • Bae, Junbong;Um, Jeong-Gi;Jeong, Hoyoung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.597-610
    • /
    • 2022
  • Knowledge of the failure behavior of friction materials considering their intermediate principal stress is related to an understanding of situations where these materials might be used: for example, the stability of deep-seated boreholes and fault slip analysis. This study designed equipment for physically implementing true triaxial compression and used it to assess specimens of plaster, a friction material. The material's mechanical behaviors are discussed based on the results. The applicability of the 3D failure criteria are also reviewed. The tested specimens were molded cuboids of width, length, and height 52, 52, and 104 mm, respectively. A total of 24 true triaxial compression tests were performed under various combinations of 𝜎3 and 𝜎2 conditions. Conventional uniaxial and triaxial compression tests were employed to estimate the mechanical properties of the plaster for use as parameters for 3D failure criteria. Examining the stress-strain relations of the plaster materials showed that a large difference between the intermediate principal stress and the minimum principal stress indicated strong brittle behavior. The mechanical behavior of the plaster used here reflects the change of intermediate principal stress. Nonlinear multiple regression analysis on the test data in the principal space showed that the modified Wiebols-Cook failure criterion and the modified Lade failure criterion were the most suitable 3D failure criteria for the tested plaster.

Load Transfer Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 하중전이 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Han, Shin-In;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • The load transfer mechanism of hybrid model of soil-nailing and compression anchor is studied in this paper. The hybrid model is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. It can make active behavior of skin friction by applying the pre-stress. In this paper, the load transfer mechanisms of soil-nailings, compression anchors, and hybrid models, respectively, are obtained from skin friction theory and load transfer theory. Field pullout tests are performed to identify the load transfer mechanism and experimental results are compared with analytical solution. In case of soil-nailings, the tension load is transferred from face to tip, however, in case of compression anchors, the compression load is transferred from tip to face. The experimental behavior of the hybrid model is similar to that of compression anchor when only pre-stress is applied. If the pullout test is performed by simultaneously pulling out the anchor and the nail, the compression load is dominant at the tip and tension load is dominant at the face. The load transfer mechanism of the hybrid model shows the combined behavior of soil-nailings with compression anchors.

Secondary Compression Characteristics Caused by Particles Crushing of Sabkha Soil (입자파쇄 특성에 따른 Sabkha층의 이차압축 특성)

  • Kim, Seok-Ju;Bae, Kyung-Tae;Yi, Chang-Tok;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.61-72
    • /
    • 2013
  • The consolidation tests are conducted to investigate the soil particle crushing stress for understanding the secondary compression characteristics of carbonate sandy sabkha soil caused by particle crushing under a high confining stress. The rate of secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$) is introduced instead of the rate of secondary compression to define the characteristic of the particle crushing compression settlement ($S_s{^*}$). Void ratio ($e_p{^*}$) and settlement ($H_p{^*}$) in particle crushing are used as a reference point of secondary behavior, and the ratio of primary compression index ($C_c$) to secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$), $C_{{\alpha}{\epsilon}}{^*}/C_c$ value was changed from 0.0105 to 0.0187. When comparing with quartz sands, secondary compression settlement of sabkha is very large due to particle crushing which is not usually observed in quartz sand. It is observed that as the depth of sabkha layer becomes deep, the $S_s{^*}$ and $C_{{\alpha}{\epsilon}}{^*}$ increase under the same stress level.

Local & Overall Buckling of Cold-Formed Channel Column under Compression at Elevated Temperatures (온도상승에 따른 압축을 받는 냉간성형 C-형강 기둥의 국부 및 전체 좌굴)

  • Baik, Tai-Soon;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.63-72
    • /
    • 2004
  • This paper is developed a computer program to analysis the elastic local and overall buckling stress based on Eurocode 3 Part 1.3 for the flange and web, and Euler equations for columns of cold-formed channel under compression at elevated temperatures. The high temperature stress-strain relationships of steel used this paper are determined according to Eurocode 3 Part 1.2. Critical temperatures and the elastic local buckling stresses of the cold-formed channel columns under compression at elevated temperatures are analysed by the computer program developed in this study. Analysis examples are given to show the applicability of the computer program developed in this study.

  • PDF

The Effect of Strain Rate on Macroscopic Behaviour in Compression Forming of Semi-Solid Aluminum Alloy (반용융 알루미늄 재료의 압축성형시 변형율속도가 미시적 거동에 미치는 영향)

  • 강충길;김기훈
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.338-345
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress stage and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for material behaviour for variation of strain rate. Therefore, to investigate the effect of compression speed on deformation of aluminum alloy with globular microstructure, the compression test for semi-solid aluminum alloy with controlled solid fraction is perform by material test system which is attracted with furance. The behavior of semi-solid aluminum alloy were discussed for the various solid fraction and die speed. The material constants in stress-strain were are also proposed.

  • PDF

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

Undrained Behavior on Saemangeum Dredged Sands (새만금 준설모래의 비배수 거동)

  • Jeong, Sang-Guk;Kang, Kwon-Soo;Yang, Jae-Hyouk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.193-203
    • /
    • 2002
  • The results of an experimental study on Saemangeum dredged sands are presented. Undrained triaxial compression tests were performed with there different initial relative densities, namely 18, 34, and 50%, intend to evaluate undrained Behavior. All undrained triaxial compression tests were performed under static loading conditions. Undrained triaxial compression tests were exhibited complete static liquefaction, zero effective confining pressure and zero stress difference at lower confining pressures. As confining pressures were increased, the effective stress paths indicated increasing resistance to static liquefaction by showing increasing dilatant tendencies. The fines and larger particles create a particle structure with high compressibility at lower confining pressure. The effect of increasing relative density was to increase the resistance of the sand against static liquefaction by making the sand more dilatant.

Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam (자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석)

  • Kang, Gun;Oh, Jeong Seok;Choi, Kwon Yong;Kim, Dae-Young;Kim, Heon Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.