• 제목/요약/키워드: Compression softening effect

검색결과 34건 처리시간 0.017초

Second order effects of external prestress on frequencies of simply supported beam by energy method

  • Fang, De-Ping
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.687-699
    • /
    • 2014
  • Based on the energy method considering the second order effects, the natural frequencies of externally prestressed simply supported beam and the compression softening effect of external prestress force were analyzed. It is concluded that the compression softening effect depends on the loss of external tendon eccentricity. As the number of deviators increases from zero to a large number, the compression softening effect of external prestress force decreases from the effect of axial compression to almost zero, which is consistent with the conclusion mathematically rigorously proven. The frequencies calculated by the energy method conform well to the frequencies by FEM which can simulate the frictionless slide between the external tendon and deviator, the accuracy of the energy method is validated. The calculation results show that the compression softening effect of external prestress force is negligible for the beam with 2 or more deviators due to slight loss of external tendon eccentricity. As the eccentricity and area of tendon increase, the first natural frequency of the simply supported beams noticeably increases, however the effect of the external tendon on other frequencies is negligible.

Effect of loading rate on softening behavior of low-rise structural walls

  • Mo, Y.L.;Rothert, H.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.729-741
    • /
    • 1997
  • Cracked reinforced concrete in compression has been observed to exhibit lower strength and stiffness than uniaxially compressed concrete. The so-called compression softening effect responsible is thought to be related to the degree of transverse cracking and straining present. It significantly affects the strength, ductility and load-deformation response of a concrete element. A number of experimental investigations have been undertaken to determine the degree of softening that occurs, and the factors that affect it. At the same time, a number of diverse analytical models have been proposed by various this behavior. In this paper, the softened truss model thoery for low-rise structural shearwalls is employed using the principle of the stress and strain transformations. Using this theory the softening parameters for the concrete struts proposed by Hsu and Belarbi as well as by Vecchio and Collins are examined by 51 test shearwalls available in literature. It is found that the experimental shear strengths and ductilities of the walls under static loads are, in average, very close to the theoretical values; however, the experiment shear strengths and ductilities of the walls under dynamic loads with a low (0.2 Hz) frequency are generally less than the theoretical values.

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

AZ31 Mg 합금의 고온 변형 시의 동적 연화 현상 (Flow Softening Behavior during the High Temperature Deformation of AZ31 Mg alloy)

  • 이병호;;염종택;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2006
  • In the present study, the flow-softening behavior occurring during high temperature deformation of AZ31 Mg alloy was investigated. Flow softening of AZ31 Mg alloy was attributed to (1) thermal softening by deformation heating and (2) microstructural softening by dynamic recrystallization. Artificial neural networks method was used to derive the accurate amounts of thermal softening by deformation heating. A series of mechanical tests (High temperature compression and load relaxation tests) was conducted at various temperatures ($250^{\circ}C{\sim}500^{\circ}C$) and strain rates ($10^{-4}/s{\sim}100/s$) to formulate the recrystallization kinetics and grain size relation. The effect of DRX kinetics on microstructure evolution (fraction of recrystallization) was evaluated by the unified SRX/DRX (static recrystallization/dynamic recrystallization) approaches

  • PDF

Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰 (Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy)

  • 염종택;정은정;김정한;홍재근;박노광;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

철근콘크리트 판넬의 인장강화효과 (Tension Stiffening Effect in Reinforced Concrete Panels)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 1998
  • An analytical model which can simulate the post-cracking behavior of reinforced concrete structures subjected to in-plane shear and normal stresses is presented. Based on the force equilibriums, compatibility conditions, and bond stress-slip relationship between steel and concrete, a criterion to simulate consider the tension-stiffening effect is proposed. The material behavior of concrete is described by an orthotropic constitutive model, and focused on the tension-compression region with tension-stiffening and compression softening effects defining equivalent uniaxial relations in the axes of orthotropy. Correlation studies between analytical results and available experimental data are conducted with the objective to establish the validity of the proposed model.

  • PDF

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Effect of C/Ti Atom Ratio on the Deformation Behavior of TiCχ Grown by FZ Method at High Temperature

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.373-378
    • /
    • 2013
  • In order to clarify the effect of C/Ti atom ratios(${\chi}$) on the deformation behavior of $TiC_{\chi}$ at high temperature, single crystals having a wide range of ${\chi}$, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273 K and in a strain rate range of $1.9{\times}10^{-4}{\sim}5.9{\times}10^{-3}s^{-1}$. Before testing, $TiC_{\chi}$ single crystals were grown by the FZ method in a He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the lattice parameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observed is the ${\chi}$-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transition temperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation. The shape of stress-strain curves of $TiC_{0.96}$, $TiC_{0.85}$ and $TiC_{0.56}$ is seen to be less dependent on ${\chi}$, the work hardening rate after the softening is slightly higher in $TiC_{0.96}$ than in $TiC_{0.85}$ and $TiC_{0.56}$. As ${\chi}$ decreases the work softening becomes less evident and the transition temperature where the work softening disappears, shifts to a lower temperature. The ${\tau}_c$ decreases monotonously with decreasing ${\chi}$ in a range of ${\chi}$ from 0.86 to 0.96. The transition temperature where the deformation mechanism changes shifts to a lower temperature as ${\chi}$ decreases. The activation energy for deformation in the low temperature region also decreased monotonously as ${\chi}$ decreased. The deformation in this temperature region is thought to be governed by the Peierls mechanism.

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • 제1권1호
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석 (High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect)

  • 유요한;박근;양동열
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.