• Title/Summary/Keyword: Compression residual stress

Search Result 107, Processing Time 0.022 seconds

사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 - (Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

전기저항 점용접부의 용접잔류응력 해석에 관한 연구 (A Study on the Welding Residual Stress Analysis of the Spot Welding Point)

  • 손일선;배동호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.233-236
    • /
    • 1999
  • The welding residual stress should be considered in fatigue stress analysis because it develope during the process of the electric resistance spot welding and it causes bad affect on the fatigue crack initiation and growth at nugget edge of spot welded points. Therefore the accurate estimation of residual stress is crucial. In this study, nonlinear finite element analysis on welding residual stress generated during the process of the spot welding was conducted, and their results were compared with the experimental data measured by X-ray diffraction method. From the results, it was found that welding residual stress existed as tension in the nugget center and as compression around the nugget edge.

  • PDF

유리의 잔류응력 예측 및 감소화 방안 연구(I): 순간동결모델에 의한 유리의 잔류응력 해석 (A Study on the Prediction and Reduction of Residual Stress in Glass (I): Analysis of Residual Stress in Glass by Instant Freezing Model)

  • 이재춘;백태현
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.902-910
    • /
    • 1994
  • Residual stress measurements were made for cylindrical glass rods to compare experimental results with the calculated values obtained by Instant Freezing Model. According to the photoelastic measurements, the stress ratio of surface compression and center tension was increased from 1.4 to 2.0 as the heat-treatment temperature was lowered, the fictitious forzen temperature was found to be closer to the heat-treatment temperature and the fictitious coefficient was increased.

  • PDF

마모와 제동에 의한 화차륜의 잔류응력 변화 (Evaluation of Residual Stress for Freight Car Wheel due to Wear and Brake Application)

  • 권석진;서정원;김민수
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.529-534
    • /
    • 2016
  • During the past few years, several incidents of freight car wheel failure during operation have occurred due to fatigue crack and overheating from braking. Tensile residual stress on the wheel tread creates an environment conducive to the formation of thermal cracks that may threaten the safety of train operations. It is important to investigate the residual stress on wheels in order to prevent derailment. In the present paper, the residual stress on wheels is measured using the x-ray diffraction system and the residual stress is analyzed using FEM. The result shows that the residual stress on the wheel rim is lower than that on the wheel tread center and the stress on over-braked wheels changes from compression residual stress to tensile residual stress.

압축성형을 통한 블로우 성형품용 프리폼 성형기술 연구 (A Study on the Molding Technology for the Preform of Blow Molding Through Compression Molding)

  • 최성현;민형기;류민영
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.3-8
    • /
    • 2007
  • Novel compression molding system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가 (Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses)

  • 이수권;양재근;강지석
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.81-88
    • /
    • 2017
  • 확장단부판 접합부는 강구조물의 보-기둥 접합부 혹은 변단면 부재로 구성된 PEB 구조시스템에 적용되는 접합부의 한 형태이다. 확장단부판 접합부는 접합부를 구성하는 단부판의 두께, 고장력볼트의 게이지 거리, 고장력볼트 축부의 직경, 고장력볼트의 개수 등의 영향으로 상이한 거동특성을 나타낸다. 확장단부판 접합부는 미국 및 유럽 등지에서는 다양한 형태로 강구조물의 기둥-보 접합부에 적용되고 있으나 우리나라에서는 널리 적용되고 있지 않다. 이러한 이유로는 확장단부판 접합부에 대한 설계강도식 제안, 접합부상세 제안, 내진성능 평가, 제작 및 시공지침서 개발 등이 적절히 이루어지지 못하고 있기 때문이다. 따라서 이 연구는 비보강 확장단부판 접합부의 국내 적용을 위한 기초자료를 제공하기 위하여 진행하였다. 이를 위하여 두께 12mm의 비보강 확장단부판에 대한 비선형 유한요소해석 및 실험을 수행하였다.

현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향 (Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material)

  • 정재욱;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

Magnetoelastic Method를 이용한 표면 경화층의 잔류응력 평가 (Evaluation of Residual Stresses of Hardened Surface by Magnetoelastic Method)

  • 남옥현;이인우;김성완;김문일
    • 열처리공학회지
    • /
    • 제5권3호
    • /
    • pp.157-164
    • /
    • 1992
  • Barkhausen noise (BN) is created by the abrupt changes in the magnetization of materials under applied AC magnetizing field. These changes are known to be sensitive to residual and applied stresses. In this study, BN theory was reviewed and it was examined how BN intensity was affected by simultaneous stress, hardness and microstructural changes. Also, magnetoelastic effect was used to evaluate residual stresses through carrying out the cantilever beam test. An increase in BN intensity was observed when applied and residual stress changes from compression into tension. Microstructural softening by tempering also increased the amount of BN. Therefore, the quantitative evaluation of residual stress and microstructural changes will be possible, provided BN method is more studied about various materials through comparing with different stress measuring techniques.

  • PDF

Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정 (Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

인장-압축하중 하의 파괴저항곡선의 감소현상 해석 (Analyses of the Decrease Phenomenon of Fracture Resistance Curve Under Tension-Compression Loading)

  • 윤병곤;석창성
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.378-385
    • /
    • 2000
  • Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, decreased under tension-compression loading condition. This phenomenon was proved by several former researches, but the causes have not been clear yet. The objective of this paper is to investigate the cause of this phenomenon. On the basis of fracture resistance curve test results, strain hardening hypothesis, stress redistribution hypothesis and crack opening hypothesis were built. In this study, hardness tests, Automated Ball Indentation(ABI) tests, theoretical stress field analyses, and crack opening analyses were performed to prove the hypotheses. From this study, strain-hardening of material, generation of tensile residual stress at crack tip, and crack opening effects are proved as the causes of the decrease hypothesis.