• Title/Summary/Keyword: Compression pressure

Search Result 1,371, Processing Time 0.028 seconds

Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구)

  • Lee, D.H.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

A Study on the Characteristics of the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파 특성에 관한 연구)

  • 이동훈;김희동;이명호;박종호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.48-56
    • /
    • 2002
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill\`s aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical ana1ysis are well compared to the results from the aeroacoutics theory with a food agreement.

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.

Influence of Clothing Pressure on Blood Flow and Subjective Sensibility of Commercial Sports Compression Wear (시판 스포츠 컴프레션 웨어의 의복압이 혈류 및 주관적 감성에 미치는 영향)

  • Kim, Nam Yim;Lee, Hyojeong
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.459-467
    • /
    • 2019
  • Compression wear provides clothing pressure and affects how blood flows. Facilitating a blood flow is one of the most important functions of compression wear. The wearer's sensibility should be considered when designing compression wear. This study instructed participants to put on 5 types of sport compression wear with different pressure levels (CP-1 to CP-5), measured clothing pressure, blood flow level, blood flow rate, and surface temperature, and examined the pressure level that influenced blood flow through a subjective sensibility assessment. An experiment measured the clothing pressure of compression wear available in the market and found that the pressure ranged 0.6-1.1 kPa for the ankle, 0.7-2.3 kPa for the calf, and 0.9-1.9 kPa for the thigh. Meanwhile, blood flow levels and rates significantly increased when participants wore CP-1, which had the highest clothing pressure level, and CP-2 and CP-4 with middle-level pressure. After exercise, CP-2's surface temperature was the highest and revealed that wearing CP-2 facilitated blood flow. CP-2 was evaluated as most positive in the sensibility assessment and showed a clothing pressure of 0.67-1.82 kPa; its pressure for the calf did not surpass 2.0 kPa. Considering positive physical effect of compression wear on blood flow and subjective psychological effect on participants, CP-2 (0.67-1.82 kPa) would have the most suitable clothing pressure level among other types of the wear in this study.

Computational Study of The Pulse Waves Discharged From The Open End of a Duct (관 출구로부터 방출되는 펄스파의 수치해석적 연구)

  • Kim, H.D.;Kim, H.S.;Kweon, Y.H.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.355-360
    • /
    • 2001
  • This study addresses a computational work of the impulsive wave which is discharged from the open end of a pipe. An initial compression wave inside the pipe is assumed to propagate toward atmosphere. The over pressure and wave-length of the initial compression wave are changed to investigate the characteristic values of the impulsive wave. The second order total variation diminishing (TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compression wave form and impulsive wave is characterized in terms of the peak pressure of the impulsive wave and its directivity. The results obtained show that for the initial compression wave of a large wave-length the peak pressure of the impulsive wave does not depend on the over pressure of the initial compression wave, but for the initial compression wave of a very short wave-length, like a shock wave, the peak pressure of the impulsive wave is increased with an increase in the over pressure of the initial compression wave. The directivity of the impulsive wave to the pipe axis becomes significant with a decrease in the wave-length of the initial compression wave.

  • PDF

Analysis of clothing pressure for commercially customized burn patient's medical compression garments for men in their 20s (시판 맞춤형 화상환자 압박복의 의복압 분석 -20대 남성 상의를 대상으로-)

  • Cho, Shin-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2019
  • This study analyzed the fabric and product size of the burn patient's custom compression garment and measured the pressure applied by the garment to assess whether proper pressure is being delivered for treatment. The test clothes were presented to the market by body size and commissioned with the same design. The subjects selected four people close to the average body size of men in their 20s determined by 7th Size Korea. The experiment was conducted by wearing a compression suit, performing activities and measuring changes in the pressure of the garment according to changes in posture. The fabric used for the compressive clothing was not ruptured even at 216 kPa, the elasticity recovery rate was measured between 80.5 and 94.5%. The product dimensions of the experimental clothing varied by up to 8cm from brand to brand, requiring the standardization of compression clothing. The experiment showed that four types of compression suit varied in pressure, and the pressure range, excluding the gastric arm (17.9mmHg), was between 2.5-14.1mmHg, which failed to meet the level of pressurization for treatment purposes. The clothing pressure in the chest area dropped when performing movements rather than standing still. This was interpreted to be a result of reduced the adhesion of the compression suit during operation. The peak pressure (31.68mmHg) and the lowest pressure (2.2mmHg) was noted in the scapula, indicating that no pressure was being transmitted on the vertebrae. The pressure of the garment on the right shoulder blade was elevated in a supine position. Because much time is spent laying down, it is necessary for the pattern design to accommodate for the increased clothing pressure on the shoulder blades. Standardization of the level of pressurization for burn patient's custom-made pressure suits for each stage of treatment is urgently required.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Differentiation of tidal volume & mean airway pressure with different Bag-Valve-Mask compression depth and compression rate (Bag-Valve-Mask의 사용방법에 따른 일회호흡량과 평균기도압의 변화 연구)

  • Jo, Seung-Mook;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose : The purpose of this study is to get basal user guidelines of safer bag-valve-mask application on patient with normal pulmonary patho-physiologic condition. Methods : This study was accomplished by pre-qualified 25 EMS junior grade students. Participants were instructed randomly compress bag to one-third, half and total and also with differesnt compression speed. Resultant tidal volumes and mean airway pressures obtained in RespiTrainer were analysed in relation to the each compression depth and rate. Results : Demographic difference does not affect tidal volume with any compression depth and rate change. Increasing compression depth is correlated with tidal volume increasement at any compression rate and also with mean airway pressure. If the compression depth is same, compression rate change did not affect significantly the resultant tidal volume or mean airway pressure. Conclusion : Hand size, Experience, BMI dose not affect tidal volume. Compress the 1600 ml bag half to total amount is safe way to offer sufficient tidal volume without risky high airway pressure delivery to patient airway who with normal lung patho-physiologic condition.

Numerical study of compression waves passing through two-continuous ducts (두 연속 덕트를 전파하는 압축파의 수치해석적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.