• 제목/요약/키워드: Compression index ratio

검색결과 150건 처리시간 0.022초

An Experimental Study on the Consolidation Characteristics with Loading Rate (재하속도에 따른 압밀특성에 관한 실험적 고찰)

  • Chae, Jum-Sik;So, Chung-Sup;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1070-1077
    • /
    • 2005
  • The purpose of this study is to establish a proper criterion for the constant rate of loading consolidation(CRLC) test which is a kind of the continuous loading consolidation(CLC) and widely used as alternative methods to the incremental loading consolidation(ILC)test. With those results, the preconsolidation pressure estimated by the CRLC test turned out to be comparatively larger than that of the ILC test, and it is increased in proportion to the applied loading rates. However, the compression index in the CRLC test is less influenced on by the loading rates. The coefficient of consolidation and permeability in the CRLC test are dependent on excess pore pressure ratio mainly. In other words, if the pore pressure ratios are too low, the coefficient of consolidation and permeability become smaller than those of the ILC test. On the other hand, if the excess pore pressure ratios are too high, the coefficient of consolidation and permeability become so larger than those of the ILC test. Therefore, loading rates should be carefully determined to generate proper excess pore pressure ratio inside the soil specimen. From this study, good results are obtained from the CRLC test if the excess pore pressure ratios were in the range of 2.5 to 6.0 %, performed with loading rates between 0.0015 and 0.005 $kgf/cm^2/min$.

  • PDF

Successful Motor Evoked Potential Monitoring in Cervical Myelopathy : Related Factors and the Effect of Increased Stimulation Intensity

  • Shim, Hyok Ki;Lee, Jae Meen;Kim, Dong Hwan;Nam, Kyoung Hyup;Choi, Byung Kwan;Han, In Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권1호
    • /
    • pp.78-87
    • /
    • 2021
  • Objective : Intraoperative neurophysiological monitoring (IONM) has been widely used during spine surgery to reduce or prevent neurologic deficits, however, its application to the surgical management for cervical myelopathy remains controversial. This study aimed to assess the success rate of IONM in patients with cervical myelopathy and to investigate the factors associated with successful baseline monitoring and the effect of increasing the stimulation intensity by focusing on motor evoked potentials (MEPs). Methods : The data of 88 patients who underwent surgery for cervical myelopathy with IONM between January 2016 and June 2018 were retrospectively reviewed. The success rate of baseline MEP monitoring at the initial stimulation of 400 V was investigated. In unmonitorable cases, the stimulation intensity was increased to 999 V, and the success rate final MEP monitoring was reinvestigated. In addition, factors related to the success rate of baseline MEP monitoring were investigated using independent t-test, Wilcoxon rank-sum test, chi-squared test, and Fisher's exact probability test for statistical analysis. The factors included age, sex, body mass index, diabetes mellitus, smoking history, symptom duration, Torg-Pavlov ratio, space available for the cord (SAC), cord compression ratio (CCR), intramedullary increased signal intensity (SI) on magnetic resonance imaging, SI length, SI ratio, the Medical Research Council (MRC) grade, the preoperative modified Nurick grade and Japanese Orthopedic Association (JOA) score. Results : The overall success rate for reliable MEP response was 52.3% after increasing the stimulation intensity. No complications were observed to be associated with increased intensity. The factors related to the success rate of final MEP monitoring were found to be SAC (p<0.001), CCR (p<0.001), MRC grade (p<0.001), preoperative modified Nurick grade (p<0.001), and JOA score (p<0.001). The cut-off score for successful MEP monitoring was 5.67 mm for SAC, 47.33% for the CCR, 3 points for MRC grade, 2 points for the modified Nurick grade, and 12 points for the JOA score. Conclusion : Increasing the stimulation intensity could significantly improve the success rate of baseline MEP monitoring for unmonitorable cases at the initial stimulation in cervical myelopathy. In particular, the SAC, CCR, MRC grade, preoperative Nurick grade and JOA score may be considered as the more important related factors associated with the success rate of MEP monitoring. Therefore, the degree of preoperative neurological functional deficits and the presence of spinal cord compression on imaging could be used as new detailed criteria for the application of IONM in patients with cervical myelopathy.

The Influence of Load Increment Ratio on the Secondary Consolidation (하중증가율(荷重增加率)이 이차압밀(二次壓密)에 미치는 영향(影響))

  • Chee, In Taeg;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • 제10권1호
    • /
    • pp.110-117
    • /
    • 1983
  • This study was conducted to investigate the influence of load increment ratio on the secondary consolidation for the marine clay at Asan bay by the hyperbola method. The results were summarized as follow: 1. Calculated secondary consolidation by the hyperbola method was slightly less than the value of Casagrande's log t method, but the difference was very little, and the secondary consolidation could be easily calculated by the hyperbola method even if load increment ratio was small. 2. The secondary consolidation ratio was increased with the decrement of load increment ratio, and the creep phenomenon of the settlement curve occurred under the condition of small load increment ratio seemed to be caused by the secondary consolidation. 3. The secondary consolidation ratio occurred during the primary consolidation was irregular in the overconsolidated range, but it was increased with the decrement of load increment ratio in the normally consolidated range. 4. The coefficient of secondary consolidation was increased with the increment of the consolidation load, made a point of the inflection near preconsolidation. And the coefficient of secondary consolidation was decreased from consolidation load $2kg/cm^2$, showed independent of load increment ratio. 5. The coefficient of secondary consolidation was showed in proportion to compression index.

  • PDF

Laboratorial Study for Mechanical Prosperities of Intermediate Soils (중간토의 역학적 특성에 관한 실험적 연구)

  • 박중배;전몽각
    • Geotechnical Engineering
    • /
    • 제11권3호
    • /
    • pp.113-122
    • /
    • 1995
  • The purposes of this study are to investigate the mechanical prospeities of the inter mediate soils through consolidation tests and triaxial compression shear tests. The intermediate soils used in this study are artificial soils which are composed of sea clay, sand and it's crushed component. The relationship between plastic index and mechanical prosperties (permeability and compressibility) is investigated through series of consoli dation tests. Strain hardening phenomenon under shearing is explored based on several overconsideration ratios and strain rates in undrained shear tests. To make a comparative study difference of drain condition and strain rate, drain shear tests are performed with overconsolidation ratio.

  • PDF

Flexural behavior of cold-formed steel concrete composite beams

  • Valsa Ipe, T.;Sharada Bai, H.;Manjula Vani, K.;Zafar Iqbal, Merchant Mohd
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.105-120
    • /
    • 2013
  • Flexural behavior of thin walled steel-concrete composite sections as cross sections for beams is investigated by conducting an experimental study supported by applicable analytical predictions. The experimental study consists of testing up to failure, simply supported beams of effective span 1440 mm under two point loading. The test specimens consisted of composite box and channel (with lip placed on tension side and compression side) sections, the behavior of which was compared with companion empty sections. To understand the role of shear connectors in developing the composite action, some of the composite sections were provided with novel simple bar type and conventional bolt type shear connectors in the shear zone of beams. Two RCC beams having equivalent ultimate moment carrying capacities as that of composite channel and box sections were also considered in the study. The study showed that the strength to weight ratio of composite beams is much higher than RCC beams and ductility index is also more than RCC and empty beams. The analytical predictions were found to compare fairly well with the experimental results, thereby validating the applicability of rigid plastic theory to cold-formed steel concrete composite beams.

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • 제15권4호
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

Evaluation of Various Tone Mapping Operators for Backward Compatible JPEG Image Coding

  • Choi, Seungcheol;Kwon, Oh-Jin;Jang, Dukhyun;Choi, Seokrim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3672-3684
    • /
    • 2015
  • Recently, the standardization of backward compatible JPEG image coding for high dynamic range (HDR) image has been undertaken to establish an international standard called "JPEG XT." The JPEG XT consists of two layers: the base layer and the residual layer. The base layer contains tone mapped low dynamic range (LDR) image data and the residual layer contains the error signal used to reconstruct the HDR image. This paper gives the result of a study to evaluate the overall performance of tone mapping operators (TMOs) for this standard. The evaluation is performed using five HDR image datasets and six TMOs for profiles A, B, and C of the proposed JPEG XT standard. The Tone Mapped image Quality Index (TMQI) and no reference image quality assessment (NR IQA) are used for measuring the LDR image quality. The peak signal to noise ratio (PSNR) is used to evaluate the overall compression performance of JPEG XT profiles A, B, and C. In TMQI and NR IQA measurements, TMOs using display adaptive tone mapping and adaptive logarithmic mapping each gave good results. A TMO using adaptive logarithmic mapping gave good PSNRs.

The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability) (화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로))

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제22권3호
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

Spiral Waves and Shocks in Discs around Black Holes: Low Compressibility and High Compressibility Models

  • LANZAFAME GIUSEPPE;BELVEDERE GAETANO
    • Journal of The Korean Astronomical Society
    • /
    • 제34권4호
    • /
    • pp.313-315
    • /
    • 2001
  • Some authors have concluded that spiral structures and shocks do not develop if an adiabatic index $\gamma$ > 1.16 is adopted in accretion disc modelling, whilst others have claimed that they obtained well defined spirals and shocks adopting a $\gamma$ = 1.2 and a $M_2/ M_1$ = 1 stellar mass ratio. In our opinion, it should be possible to develop spiral structures for low compressibility gas accretion discs if the primary component is a black hole. We considered a primary black hole of 8M0 and a small secondary component of 0.5M$\bigodot$ to favour spiral structures formations and possible spiral shocks via gas compression due to a strong gravitational attraction. We performed two 3D SPH simulations and two 2D SPH simulations and characterized a low compressibility model and a high compressibility model for each couple of simulations. 2D models reveal spiral structures existence. Moreover, spiral shocks are also evident in high compressibility 2D model at the outer disc edge. We believe that we could develop even well defined spiral shocks considering a more massive primary component.

  • PDF

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.