• Title/Summary/Keyword: Compression field theory

Search Result 75, Processing Time 0.061 seconds

Crack Modelling to Determine Concrete Contribution to Shear Resistance (콘크리트 전단 기여분 결정을 위한 균열묘사 방법)

  • 조순호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

Analytical and numerical study of temperature stress in the bi-modulus thick cylinder

  • Gao, Jinling;Huang, Peikui;Yao, Wenjuan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.81-92
    • /
    • 2017
  • Many materials in engineering exhibit different modulus in tension and compression, which are known as bi-modulus materials. Based on the bi-modulus elastic theory, a modified semi-analytical model, by introducing a stress function, is established in this paper to study the mechanical response of a bi-modulus cylinder placed in an axisymmetric temperature field. Meanwhile, a numerical procedure to calculate the temperature stresses in bi-modulus structures is developed. It is proved that the bi-modulus solution can be degenerated to the classical same modulus solution, and is in great accordance with the solutions calculated by the semi-analytical model proposed by Kamiya (1977) and the numerical solutions calculated both by the procedure complied in this paper and by the finite element software ABAQUS, which demonstrates that the semi-analytical model and the numerical procedure are accurate and reliable. The result shows that the modified semi-analytical model simplifies the calculation process and improves the speed of computation. And the numerical procedure simplifies the modeling process and can be extended to study the stress field of bi-modulus structures with complex geometry and boundary conditions. Besides, the necessity to introduce the bi-modulus theory is discussed and some suggestions for the qualitative analysis and the quantitative calculation of such structure are proposed.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

The AFOSM Study of RC Shear Wall within Feasible Design Area (유용설계 영역내 철근콘크리트 전단벽의 ASOFM 해석에 관한 연구)

  • 김요숙;신영수;이화미
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.207-214
    • /
    • 2001
  • In Korea, the multi-dwelling residential buildings are most popular housing system that is reinforced concrete shear wall system. However, the serviceability and safety of the system have been decreased because of the errors in design or construction and inadequate maintenance. In addition the safety of the system cannot be evaluated reasonably because the system is analyzed by the deterministic approach. Therefore, this study is aimed to analyze reinforced concrete shear walls by the reliability approach considering uncertainty based on the probability theory. In this study, a reliability analysis program using MATLAB is developed by combining AFOSM and Sampling Method for the reinforced concrete shear walls within feasible design area. The reasonable reliability index β of ultimate limit states for RC shear walls are calculated automatically using this developed program with the measured data those have means and standard deviations in the field. The ultimate states are compression failure, tension failure, governing compression, and governing bending of the reinforced concrete shear walls respectively. To estimate the safety of the system using developed program can be used to predict residual life-time of the system.

  • PDF

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

Analysis of Single-Walled Carbon Nanotube under Compression using Elastic Beam Model (탄성 보 모델을 이용한 탄소나노튜브의 압축거동해석)

  • Park, No-Jung;Chun, Yun-Hee;Park, Jae-Gyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.567-575
    • /
    • 2010
  • The mechanical properties of Carbon nanotube is superior such that it can be used in many areas of engineering field in the future, though the analysis of the mechanical behavior of nanotube is expensive due to its small size and uniqueness when the molecular dynamics or a generalized function theory is applied. To overcome these disadvantages, the force field between Carbon atoms can be substituted by structural members. In this study, main forces between atoms in Carbon nanotube are described by 0.1 nanometer length circular beams and linear behaviors under compression are investigated. The linear behavior is in good agreement with results by other methods. This method can be used in nonlinear analysis of nanotube when the beam elements are properly configured.

Predicting Actual Strength of Shear Reinforcement Using Effective Stirrup Concept (유효 스터럽 개념을 이용한 전단보강근의 강도 예측)

  • Kwon, Ki-Yeon;Yang, Jun-Mo;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • This paper presents the prediction of the actual strength of shear reinforcement on the basis of the concept of effective stirrups. The prediction method incorporating the shear cracking angle was proposed with the estimation by the Modified Compression Field Theory (MCFT). To check the validity of the method, discussion of the current ACI 318-05 and comparison of 39 test results from the literature including author's retrospective test data were made. The influencing factors of compressive concrete strength and type of shear-reinforcement were also investigated. Furthermore, two full-scale beam specimens shear-reinforced with headed bars were tested to demonstrate the applicability of the proposed method.

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도)

  • 박창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2002
  • The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

Behaviour of Beams Without Transverse Reinforcement (전단보강근이 없는 보의 거동)

  • Cho, Soon-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.173-181
    • /
    • 1999
  • To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of five contributing factors to concrete shear resistance($v_c$), which are i)flexural compression zone, ii)friction at crack faces, iii)dowel action, iv)arch action and recently identified, v)residual tensile stresses across cracks, was explained physically using two analytical methods based on the truss concept. One is called "Modified Compression Field Theory(MCFT)" considering ii) and v) explicitly, and the other "Crack Friction Truss Model(CFTM)" more dominantly ii) in determining concrete resistance. To verify their effectiveness, the predictions using MCFT and CFTM were also made for twenty KAIST beam tests($f'_c$=53.7Mpa), designated more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of a/d, longitudinal reinforcement ratios, and obtained from MCFT enabled additional explanations for some phenomena which were difficult to measure in tests. However, MCFT seemed somewhat conservative for beams with higher longitudinal reinforcement, while somewhat unsafe for beams with larger depths. More tests are necessary leading to firm conclusions in these areas.

Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads

  • Zhou, C.E.;Vecchio, F.J.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.455-479
    • /
    • 2005
  • This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models included in the structural analysis are mainly based on the Modified Compression Field Theory and the Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is then implemented into a nonlinear finite element analysis program VecTor2(C) for 2D reinforced concrete membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the complete response of a concrete structure to thermal and mechanical loads.