• Title/Summary/Keyword: Compression displacement

Search Result 435, Processing Time 0.024 seconds

Analytical Study on Buoyancy Preflexion Effects on Structural Performance of Concrete Floating Structure (부력 프리플랙션 효과가 콘크리트 부유구조체의 구조성능에 미치는 영향에 대한 해석적 연구)

  • Lee, Du-Ho;Jeong, Youn-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.75-83
    • /
    • 2012
  • In this study, an analytical studies were carried out for the buoyancy preflexion method to improve structural performance of concrete floating structures. The buoyancy preflexion means that the preflexion effects were induced to the floating structure due to the difference in buoyancy between the pontoon modules composing the floating structures. In order to verify the buoyancy preflexion effects, an analytical studies were carried out for the floating structures. The size and dimensions of FE model were determined through the structural design process. The parameter of this analytical study was length ratios of central module part, which induces buoyancy preflexion effects, to the total length. The analysis results were pre-compression on the bottom concrete slab and displacement of freeboard due to buoyancy preflexion effects. These results were processed according to the loading step, buoyancy preflexion loads on the bottom and live loads on the topside. Then, the buoyancy preflexion effects on structural performance was analyzed. As the results of this study, it was found that the buoyancy preflexion significantly influence on structural performance of floating structures. According to the length ratio, the buoyancy preflexion effects have a tendency of parabolic form and maximized at the length ratio of 40~60%. The buoyancy preflexion method is simple in principle and easy in application. Also, it can effectively induce pre-compression on the bottom concrete slab. Therefore, it can be concluded that the buoyancy preflexion method contribute to the improvement of structural performance and decreasing of the cross-sectional depth of floating structures.

Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate (고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구)

  • Cha, Kyoung-Moon;Choi, So-Yoeng;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • It were found that the heavyweight waste glass can be used as a construction materials including concrete from previous experimental studies. In this study, in order to evaluate the structural behavior of RC members using heavyweight waste glass as fine aggregate, a flexural behavior test was performed. And then, its results were compared with those obtained from non-linear finite element model analysis. From the results, when the heavyweight waste glass as fine aggregate in RC member, the area of compressive crushing and the number of cracks increased, however, the mean of cracking spacing decreased. Also it had reduced the ductility at high loading stage. For this reason, the same analysis method about the RC member using natural sand as fine aggregate did not predict the initial stiffness, yield load and maximum load on the flexural behavior of the RC members using heavyweight waste glass as fine aggregate. On the other hand, when it is analytically implemented the reduction of neutral axis depth due to developed compression crushing, the results of non-linear finite element analysis could be predicted the experimental results, relatively well.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Nonlinear Analysis of Nuclear Reinforced Concrete Containment Structures under Accidental Thermal Load and Pressure (온도 및 내압을 받는 원자로 철근콘크리트 격납구조물의 비선형해석)

  • Oh, Byung Hwan;Lee, Myung Gue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.403-414
    • /
    • 1994
  • Nonlinear analysis of RC containment structure under thermal load and pressure is presented to trace the behaviour after an assumed LOCA. The temperature distribution varying with time through the wall thickness is determined by transient finite element analysis with the two time level scheme in time domain. The layered shell finite elements are used to represent the containment structures in nuclear power plants. Both geometric and material nonlinearities are taken into account in the finite element formulation. The constitutive relation of concrete is modeled according to Drucker-Prager yield criteria in compression. Tension stiffening model is used to represent the tensile behaviour of concrete including bond effect. The reinforcing bars are modeled by smeared layer at the location of reinforcements accounting elasto-plastic axial behaviors. The steel liner model under Von Mises yield criteria is adopted to represent elastic-perfect plastic behaviour. Geometric nonlinearity is formulated to consider the large displacement effect. Thermal stress components are determined by the initial strain concept during each time step. The temperature differential between any two consecutive time steps is considered as a load incremental. The numerical results from this study reveal that nonlinear temperature gradient based on transient thermal analysis will produces excessive large displacement. Nonlinear behavior of containment structures up to ultimate stage can be traced reallistically. The present study allows more realistic analysis of concrete containment structures in nuclear power plants.

  • PDF

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Clinical Outcomes of Anterior Open Reduction and Posterior Percutaneous Screw Fixation for Displaced Talar neck Fractures (전방 정복술 및 경피적 후방 압박나사 내고정술을 이용한 전위성 거골 경부 골절의 치료 결과)

  • Park, Ji-Kang;Kim, Yong-Min;Choi, Eui-Sung;Shon, Hyun-Chul;Cho, Byung-Ki;Cha, Jung-Kwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.2
    • /
    • pp.106-114
    • /
    • 2013
  • Purpose: Posteroanterior screw fixation is biomechanically stronger than anteroposterior screw fixation. However, there are few literature about the correlation between clinical results and more strength by posteroanterior fixation. This study was performed to evaluate the clinical outcomes of the accelerated rehabilitation following anterior open reduction and posterior percutaneous screw fixation for displaced talar neck fractures. Materials and Methods: Eighteen cases were followed up for more than 1 year after posteroanterior fixation using headless compression screw for talar neck fractures. The clinical evaluation was performed according to American Orthopaedic Foot and Ankle Society (AOFAS) score and Hawkins criteria. As radiographic evaluation, the degree of fracture displacement, period to union, and occurrence rate of complications such as avascular necrosis through MRI were measured. Results: The AOFAS score was average 90.4 points at the last follow-up. There were 7 excellent, 9 good, and 2 fair results according to the Hawkins criteria. Therefore, 16 cases(88.8%) achieved satisfactory results. The degree of fracture displacement had improved significantly from preoperative average 5.6 mm to 1.2 mm immediate postoperatively, and maintained to 1.1mm at the last follow-up. All cases achieved bone union, and the period to union was average 12.4 weeks. There were 3 cases of avascular necrosis of talar body and 2 cases of post-traumatic arthritis. Conclusion: Anterior open reduction and posterior percutaneous headless screw fixation seems to be an effective surgical method for displaced talar neck fractures, because of the possibility of accurate restoration of articular surface, fixation strength enough to early rehabilitation, and needlessness of hardware removal.

A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling (인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델)

  • Tae-Wan Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • In this study, a nonlinear truss finite element is developed to analyze structures with negative Poisson effect-induced tensile buckling. In general, the well-known buckling phenomenon is a stability problem under a compressive load, whereas tensile buckling occurs because of local compression caused by tension. It is not as well-known as classical buckling because it is a recent study. The mechanism of tensile buckling can be briefly explained from an energy standpoint. The nonlinear truss finite element with a torsional spring is formulated because the finite element has not been reported in the literature yet. The post-buckling analysis is then performed using the generalized displacement control method, which reveals that the torsional spring plays an important role in tensile buckling. Structures that mimic a negative Poisson effect can be constructed using such post-buckling behaviors, and one of the possible applications is a mechanical switch. The results obtained are compared to those of analytical solutions and commercial finite element analysis to assess the validity of the proposed finite element model. The numerical results show that the developed finite element model could be a viable option for the basic design of nonlinear structures with a negative Poisson effect.

Evaluation for Applications of Displacement Criterion by the Critical Strain of Uniaxial Compression in Rock Mass Tunnel (일축압축 한계변형률에 의한 암반터널 변위기준 적용성 평가)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.321-329
    • /
    • 2009
  • Laboratory compressive test was conducted on 6 different types of rock in order to investigate the characteristic of critical strain under uniaxial and triaxial stress condition. The results of uniaxial compressive test mostly ranged within 1~100MPa, the critical strain was also located between 0.1~1.0%. Therefore the results distributed within the upper and lower boundary proposed by Sakurai (1982). And the failure/critical strain ratio (${\varepsilon}_f/{\varepsilon}_0$) showed between 1.0~1.8 value depending on the uniaxial compressive strength. The results of critical strain by triaxial compressive test showed below 0.8% value for all test, the M value calculated from uniaxial and triaxial compressive test results ranged 1.0~8.0 for most of rock specimens. It is concluded that failure strain (${\varepsilon}_{f3}$) of rock mass, which is in triaxial stress condition is larger than the results of uniaxial stress condition (${\varepsilon}_{f1}$) by 1.0~8.0 times and value showed 1.0~1.8 larger value than critical strain (${\varepsilon}_{01}$). Therefore it is a conservative way for rock tunnel to use critical strain (${\varepsilon}_{01}$) calculated from a uniaxial compressive strength on tunnel displacement monitoring.

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.