• Title/Summary/Keyword: Compression absorption

Search Result 205, Processing Time 0.027 seconds

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Conservation Study of Stones by Using Acrylic Monomer (아크릴계 단량체를 이용한 석조물의 보존처리 연구)

  • Kang, Sang-Yong;Suh, Man-Cheol;Kim, Un-Young;Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.213-218
    • /
    • 2008
  • About 17% of historical properties in Korea were made of stones and most of them are exposed to weathering, as such that discoloring, cracking, and shattering occur from physical, chemical, mechanical, and biological effects due to outdoor placement. Proper treatments for conservation are necessary to prevent the weathering damage and to retain the original shape of stones. MMA, an acrylic monomer having low viscosity can be impregnated deep inside stones by consecutive compression and decompression process in a pressurized vessel. After the polymerization of MMA impregnate, the space inside of the stone was filled with PMMA. It is expected that water repellent and weather resistant properties will be improved because of the improved bonding of constituent materials in stones. In this study, moisture absorption, chemical resistance, and mechanical property of two domestic granites were examined after treating them with MMA for the purpose of determining the conservation value of this method that was possibly useful to the conservation of stone cultural assets.

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge (다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발)

  • Dong Hun, Heo;Dong Yeol, Hyeon;Sung Cheol, Park;Kwi-Il, Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

A Study on the Optimal Design of Ti-6Al-4V Lattice Structure Manufactured by Laser Powder Bed Fusion Process (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 격자 구조물의 최적 설계 기법 연구)

  • Ji-Yoon Kim;Jeongmin Woo;Yongho Sohn;Jeong Ho Kim;Kee-Ahn Lee
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.146-155
    • /
    • 2023
  • The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06-0.12 mm), laser power (225-325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress-strain data from the compression test and analysis are compared.

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Evaluation on Strength Characteristics of Reactive Materials to Prevent the Diffusion of Organic Pollutants (유기오염물 차단을 위한 반응재료의 강도 특성 평가)

  • Jai-Young Lee;Seung-Jin Oh;Su-Hee Kim;Kicheol Lee;Jeong-Jun Park;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2023
  • This paper described the strength variation characteristics to evaluate the applicability of a reactive material that can absorb organic pollutants as an underground barrier. The Strength was evaluated by unconfined compression test. The test results showed that the strength of the reactive material according to the absorption of each pollutant was in the order of water > TCE > TPH. However, the strength of the reactive material absorbing TPH was greater than that of the case absorbing TCE, when the composition ratio of polynorbornene was 12% or less. The strength of the reaction material in contact with water continued to decrease as the polynorbornene composition ratio decreased. The strength of the reaction material in contact with TCE and TPH increased as the polynorbornene composition ratio decreased from 30% to 21%, and then decreased. In other words, the optimal composition ratio of the reactive material should be applied considering the strength due to contact with pollutants according to the stress conditions occurring in the ground.

Sensory and Physical Characteristics of Hwajeun Depended on the Various Levels of Oil Amounts and frying Time (기름의 양과 지지는 시간에 따른 화전의 관능적 및 물리적 특성)

  • 이승현;박정은;장명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.765-771
    • /
    • 2003
  • The aim of this study was to standardize the various methods and recipes of Hwajeun (glutinous rice pancake with flower) appeared in the literature. For this purpose, the effects on the sensory and rheological characteristics of Hwajeun in terms of the various levels of oil and frying times were investigated. This experiment consisted of a sensory evaluation in terms of the acceptance (color, flavor, oily feeling, softness, chewiness, adhesiveness, taste and overall preference) and objective evaluation performed by a texture analyzer, a color difference meter and measurements of the water content and oil absorption. The moisture content of the treatments as a function of the frying time, S7, showed a significantly(p<0.01) low value, and the oil absorption of the Hwajeun made with different frying times increased in proportion to the increment of the frying time(p<0.001). In terms of color, the b value of the Hwajeun made with 16g oil for frying showed a higher value than the others. In the two bite compression test, the hardness of the Hwajeun made with 4g oil for frying showed a significantly (p<0.001) high value among the S2 and S3 samples. As a result of the sensory evaluation for the Hwajeun made with various amounts of oil and frying times, the Hwajeun made with 16g oil for frying and a 2 min frying time for each side (S6) was the most preferred in terms of the softness, chewiness, taste and overall preference of the sensory evaluation

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.