• Title/Summary/Keyword: Compression Property

Search Result 472, Processing Time 0.026 seconds

Performance Analysis of a Seawater Ice Machine Applied Two-stage vapor compression refrigeration system for Various Refrigerants (2단 증기 압축식 냉동시스템을 적용한 해상용 제빙장치의 냉매에 따른 성능 분석)

  • Yoon, Jeong-In;Son, Chang-Hyo;Heo, Seong-Kwan;Jeon, Min-Joo;Jeon, Tae-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-90
    • /
    • 2016
  • Coefficient of performance (COP) for two-stage compression system is investigated in this paper to develop seawater ice machine. The system performance is analyzed with respect to degrees of superheating and subcooling, condensing and evaporating temperatures, compression and mechanical efficiencies and mass flow ratio in an inter-cooler. The main results are summarized as follows : The COP of the system grows when the mass flow ratio, subcooling degree and evaporating temperature edge up. Contrariwise, the system performance descends in case that superheating degree and condensing temperature increase. The most effective factor for the COP is the mass flow rate ratio. Each refrigerant has different limitation for a value of the mass flow ratio in the inter-cooler because of difference in material property.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

Effect of Rubber on Microcellular Structures from High Internal Phase Emulsion Polymerization

  • Park, Ji-Sun;Chun, Byoung-Chul;Lee, Seong-Jae
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • A microcellular, which combines a rubber with the conventional formulation of styrene/divinylbenzene/sorbitan monooleate/water system, was prepared using high internal phase emulsion (HIPE) polymerization. Although the open microcellular foam with low density from the conventional HIPE polymerization shows highly porous characteristics with fine, regular and isotropic structure, the one having much smaller cell size is desirable for various applications. In this study, a polybutadiene was introduced to reduce the cell size with comparable properties. Major interests were focused on the effects of rubber concentration and agitation speed on the cell sizes and compression properties. Scanning electron microscopy was used to observe the microcellular morphology and compression tests were conducted to evaluate the stress-strain behaviors. It was found that the cell size decreased as rubber concentration increased, reflecting a competition between the higher viscosity of continuous phase and the lower viscosity ratio of dispersed to continuous phases due to the addition of high molecular weight rubber into the oil phase of emulsion. A correlation for the average cell size depending on agitation speed was attempted and the result was quite satisfactory.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Mechanical Properties of Woodceramics According to Carbonizing Temperature - Bending, Compression and Hardness -

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Oh, Seung-Won;Piao, Jin-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper reports the mechanical properties of bending, compression and hardness of woodceramics manufactured at different carbonizing temperatures (600℃, 800℃, 1000℃, 1200℃ and 1500℃) in a vacuum sintering furnace using sawdust boards of Pinus densiflora, Pinus koraiensis and Larix kaemferi. The highest values of bending MOR (MORb) were 104 kgf/cm2 (1200℃), 91 kgf/cm2 (1500℃) and 86 kgf/cm2 (1500℃), the highest values of compression strength were 152 kgf/cm2(1200℃)), 160 kgf/cm2(1000℃) and 189 kgf/cm2(1000℃), the highest values of hardness were 2.00 kgf/mm2(800℃), 2.01 kgf/mm2 (1200℃) and 2.28 kgf/mm2 (1000℃) in P. densifora, L. kaemferi and P. koraiensis, respectively. The carbonizing temperature of 600℃ was not proper to the mechanical properties for three kinds of sawdust boards and the highest values of mechanical properties were different from the kinds of mechanical properties and species of sawdust boards. Therefore, it is necessary to manufacture woodceramics at a proper temperature for particular species of sawdust boards to obtain good mechanical properties.

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

Crystallization behavior of Cu-base bulk metallic glass in supercooled liquid region during compression and tension (과냉각 액상구간에서 압축.인장시 Cu기 비정질 합금의 결정화 거동)

  • Park, E.S.;Kim, S.H.;Huh, M.Y.;Kim, H.W.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.215-217
    • /
    • 2008
  • Crystallization behavior of the bulk metallic glass (BMG) during compression and tension was studied in the supercooled liquid region (SLR). Rod samples of the BMG alloy were produced by consolidating gas atomized powders of $Cu_{54}Zr_{22}Ti_{18}Ni_6$ using spark plasma sintering. The crystallization behavior in these samples was examined by tackling changes in thermal property during heating the samples in DSC. The present BMG alloy was firstly decomposed and then crystallized during annealing in the SLR. The phase decomposition from the original amorphous phase was retarded by the compressive stress, while it was accelerated by the tensile stress.

  • PDF

Development of a New Precision Actuator by Bi-morph Type PZT to Realize Nano/Micro Mechanical Testing in MUTM (바이몰프형 PZT를 이용한 소형만능재료시험기용 정밀 구동 액추에이터의 개발)

  • Kweon, Hyun-Kyu;Choi, Seong-Dae;Cheong, Seon-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This paper shows a new precision actuator of MUTM(miniature universal testing machine) for the testing of compression and tensile load on the MEMS materials and structures. The MUTM consists of a sample holder, an ultraprecision precision actuator(tranlation stage) and load sensor. The precision actuator has been developed for generating displacements with nanometer accuracy and a dynamic range of 1mm simultaneously. In this paper, it can be made by using the displacement property of bi-morph type PZT, which is able to extend the long range(stroke) according to cantilever size. However, it is not enough to be generated for compression and tensile load in miniature universal testing machine. Therefore, three dozen bi-morph type PZTs are used for generating the load. The load and displacement of the precision actuator are 35g and 0.4mm respectively.

  • PDF

The Progressive Image Coding using Wavelet Transform (웨이브렛 변환을 이용한 점진적 영상 부호화)

  • 황도연;박정호;유강수;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.73-76
    • /
    • 2001
  • We propose a new method for image coding that it is based on highly related property between a spatial image and wavelet transform image. The characteristics have an important role in the design of proposed algorithm. This algorithm for image coding is to obtain high compression rate at low bit rate. The other side, the high activity regions are related to significant coefficients which give much influence to image reconstruction, because they mean the important factor to represent the appearance of images such as edge or boundary. For some images with low activity, we can obtain the reconstructed image with near to 30 dB at 150: 1 compression ratio.

  • PDF

A Color Image Watermarking Method for Embedding Audio Signal

  • Kim Sang Jin;Kim Chung Hwa
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.631-635
    • /
    • 2004
  • The rapid development of digital media and communication network urgently brings about the need of data certification technology to protect IPR (Intellectual property right). This paper proposed a new watermarking method for embedding contents owner's audio signal in order to protect color image IPR. Since this method evolves the existing static model and embeds audio signal of big data, it has the advantage of restoring signal transformed due to attacks. Three basic stages of watermarking include: 1) Encode analogue ID owner's audio signal using PCM and create new 3D audio watermark; 2) Interleave 3D audio watermark by linear bit expansion and 3) Transform Y signal of color image into wavelet and embed interleaved audio watermark in the low frequency band on the transform domain. The results demonstrated that the audio signal embedding in color image proposed in this paper enhanced robustness against lossy JPEG compression, standard image compression and image cropping and rotation which remove a part of image.

  • PDF