• Title/Summary/Keyword: Compression Force

Search Result 640, Processing Time 0.026 seconds

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure (종이성형구조물의 휨강성에 대한 실험적 연구)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

ASTC Block-Size Determination Method based on PSNR Values (PSNR 값 기반의 자동화된 ASTC 블록 크기 결정 방법)

  • Nah, Jae-Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.21-28
    • /
    • 2022
  • ASTC is one of the standard texture formats supported in OpenGL ES 3.2 and Vulkan 1.0 (and later versions), and it has been increasingly used on mobile platforms (Android and iOS). ASTC's most important feature is the block size configuration, thereby providing a trade-off between compression quality and rates. With the higher number of textures, however, it is difficult to manually determine the optimal block sizes of each texture. To solve the problem, we present a new approach based on PSNR values to automatically determine the ASTC block size. A brute-force approach, which compresses a texture on all block sizes and compares the PSNR values of the compressed textures, can increase the compression time by up to 14 times. In contrast, our three-step approach minimizes the compression-time overhead. According to our experiments on a texture set including 64 various textures, our method determined the block sizes from 4×4 to 12×12 and reduced the size of compressed files by 68%.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Estimation of Loads applied to a Rider using a static Biomechanical Model. (자전거를 탈때의 정적 생체역학 모형에 관한 연구)

  • 반영환;장필식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.197-204
    • /
    • 1997
  • Torques on each joint, the compression on L5/S1 disc, the force on hand of a rider are estimated using a static biomechnic model. Forces that the rider applies to the pedals, saddle and handle during starting and speeding are estimated using static mechanics. Physical stress is considered accroding to handle height and horizontal distance between handle and pedal. When handle height is higher in normal speeding, the force on handle and sum of torques on each joint decreases.

  • PDF

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Analysis of the Dynamic Behavior and Characteristics of the CNG Compressor Considering Bearing Characteristics (베어링 특성을 고려한 CNG 압축기의 동적 거동 및 동특성 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.342-349
    • /
    • 2006
  • In this study, a dynamic behavior of rotor-bearing system used in CNG compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for roller bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at eccentric crank-pin part. And, the steady state displacements of the rotor are compared with a variation in stiffness coefficient of roller bearings. Results show that the loci of crankshaft considering unbalance forces and external compression forces are more severe in whirl motion than with only unbalance forces.

Numerical Prediction of Process Window for Injection-Compression Molding of 7-inch LGP (수치해석을 통한 7인치 도광판 사출압축성형 공저범위 예측)

  • Hong, S.K.;Min, I.K.;Kang, J.J.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • The main objective of the present study is to predict the process window of injection-compression molding corresponding to the capability of an injection machine for fabricating 7 inch LGP. The open distance and volume filled after injection stage were found to be two important factors that affect critical requirements such as flow length, injection pressure and clamping force for the process. Process window for the key factors was also predicted by response surface method. As a result, predicted process window for open distance and volume filled after injection stage satisfying the critical requirement with a given injection machine was in the range of 60 ~ 75%, and 104.00 ~ 104.25%, respectively.

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

Study on the Polymorphism of Sulfa Drugs (설파제의 다형(多形)에 관한 연구)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • A new form of sulfabenzamide was characterized using X-ray diffraction patterns and differential scanning calorimetry. Solubility studies demonstrated that, of the sulfabenzamide polymorphs, the new form was more soluble than form I. Compression of the new form at compression force of 1000 $kg/cm{^2}$ didn't induce polymorphic change in the crystal. Similar patterns were also produced through grinding. The effects of some diluents on the polymorphic transformation from the new form into form I by grinding and compression were also studied. Three diluents, $Avicel^{\circledR}$, lactose and starch showed no influence on the polymorphic transformation. The new form seemed to be more suitable for the pharmaceutical preparation.

  • PDF

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF