• Title/Summary/Keyword: Compression Depth

Search Result 305, Processing Time 0.022 seconds

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

Shear Characteristics of a SCP Ground with Different Length of Sand Pile and Replacement Ratio (모래말뚝 설치심도 및 치환율이 다른 SCP지반의 전단특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Lee, Young-Yoel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.9-18
    • /
    • 2011
  • This paper presents shear characteristics of a ground improved by sand piles. The sand piles have different length and diameter depending on the depth of a clayey layer. A series of CU triaxial compression tests are carried out on specimens covered with/without soft material which is similar to geotextile. The results show that the shear strength and stress ration increase as the length and the diameter of the sand pile increase. In addition, covering the specimen with the soft material appears to affect those characteristics as well. The increase of cohesion seems to be more remarkable compared to internal frictional angle.

Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617 (Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성)

  • Jo, Tae-Sun;Lee, Seung-Ho;Kim, Gil-Su;Kim, Se-Hoon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.268-272
    • /
    • 2007
  • Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.

Cyclic loading response of footing on multilayered rubber-soil mixtures

  • Tafreshi, S.N. Moghaddas;Darabi, N. Joz;Dawson, A.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.115-129
    • /
    • 2018
  • This paper presents a set of results of plate load tests that imposed incremental cyclic loading to a sandy soil bed containing multiple layers of granulated rubber-soil mixture (RSM) at large model scale. Loading and unloading cycles were applied with amplitudes incrementally increasing from 140 to 700 kPa in five steps. A thickness of the RSM layer of approximately 0.4 times the footing diameter was found to deliver the minimum total and residual settlements, irrespective of the level of applied cyclic load. Both the total and residual settlements decrease with increase in the number of RSM layers, regardless of the level of applied cyclic load, but the rate of reduction in both settlements reduces with increase in the number of RSM layers. When the thickness of the RSM layer is smaller, or larger, settlements increase and, at large thicknesses may even exceed those of untreated soil. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. With the inclusion of RSM layers, the coefficient of elastic uniform compression decreases by a factor of around 3-4. A softer response was obtained when more RSM layers were included beneath the footing damping capacity improves appreciably when the sand bed incorporates RSM layers. Numerical modeling using "FLAC-3D" confirms that multiple RSM layers will improve the performance of a foundation under heavy loading.

Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method (플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.172-180
    • /
    • 2021
  • In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

Experimental and numerical investigations on axial crushing of square cross-sections tube with vertical wave

  • Eyvazian, Arameh;Eltai, Elsadig;Musharavati, Farayi;Taghipoor, Hossein;Sebaey, T.A.;Talebizadehsardari, Pouyan
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • In this paper, wavy square absorbers were experimentally and numerically investigated. Numerical simulations were performed with LS-Dyna software on 36 wavy absorbers and their crushing properties were extracted and compared with the simple one. The effect of different parameters, including wave height, wave depth, and wave type; either internal or external on the crushing characteristics were also investigated. To experimentally create corrugation to validate the numerical results, a set of steel mandrel and matrix along with press machines were used. Since the initial specimens were brittle, they were subjected to heat treatment and annealing to gain the required ductility for forming with mandrel and matrix. The annealing of aluminum shells resulted in a 76%increase in ultimate strain and a 60% and 56% decrease in yield and ultimate stresses, respectively. The results showed that with increasing half-wave height in wavy square absorbers, the maximum force was first reduced and then increased. It was also found that in the specimen with constant diameter and half-wave depth, an increment in the half-wave height led to an initial increase in efficiency, followed by a decline. According to the conducted investigations, the lowe maximum force can be observed in the specimen with zero half-wave depth as compared to those having a depth of 1 cm.

Discrimination of Underground Explosions from Microearthquakes through the Pure-Continental Path (순수 대륙 경로에서 미소지진과 지하 인공폭발의 구별)

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1994
  • Discrimination studies between microearthquakes and underground explosions are carried out in the pure-continental path of north-south within the Korean Peninsula. The characteristic waveforms for explosions and microearthquakes are investigated in the light of observation and synthetic seismograms. The characteristic waveform generation is minnly a function of source mechanism and ray-path and former influences more strongly than the latter.A double-couple source mechanism for microeatthquakes and a single-couple(force) mechanism for explosions are presented in this study. It is found for very shallow events to have outstanding of $L_g$ waves in the transverse components that pass through the upper crust with period of 1 - 6 seconds and fundamental modes of Rayleigh waves, $R_g$ in the vertical component with period 8-12 seconds. Furthermore it is pointed out that the first arrival amplitudes of SH waves for explosions are always srnall regardless of azimuth of stations since there is non-existence of nodal lines for the explosion mechanism. Theoretical seismograms for explosions show the first motions of compression with short wavelengths as well as mostly fundamental modes of Rayleight waves, $R_g$ waves and $L_g$ waves, whereas those of micro-earthquakes give either compression or dilatation according to the ack azimuth epicenter to stations and poor or non $R_g$ waves and complicated $L_g$ waves, depending on the focal depth.

  • PDF

A Comparison of the Efficiency of Chest Compression Methods during Cardiopulmonary Resuscitation (소아 심폐소생술 중 가슴압박 방법의 효율성 비교)

  • Yun, Seong-Woo;Lee, Hyo-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.388-390
    • /
    • 2022
  • Cardiac arrest is a series of conditions that occur when the heart is stopped, regardless of the cause. Cardiac arrest due to heart disease is included in the cause of death in korea every year and is unpredictable. One of the only ways to save a patient's life when a cardiac arrest is cardiopulmonary resuscitation is to maintain circulation through this procedure. Therefore compared the quality of chest compressions with visual information using mirrors. There was a significant difference in the mean depth of chest compressions(48.93±6.76, 53.86±4.56, <0.001), and there was also a difference in compression to relaxation ratio(0.87±0.13, 0.96±0.10, <0.002). There was also a significant difference in attitude awareness(4.93±0.85, 8.14±1.38, <0.001).

  • PDF