• Title/Summary/Keyword: Compression Chamber

Search Result 160, Processing Time 0.03 seconds

Flow Characteristics inside a Compression Chamber due to the Orbiting Motion of a Scroll (스크롤 선회에 따른 압축 공간내의 유동 특성)

  • Kang, Dong-Jin;Jeon, Hyun-Joo;O, Mi-Ae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.251-256
    • /
    • 2003
  • The detailed flow characteristics inside a compression chamber due to the orbiting motion of a scroll is studied numerically. The orbiting motion of a scroll is modelled at 7 orbiting angles. At each orbit angle, the central compression chamber is modelled. All computations are carried by using an in-house code. It is based on the SIMPLE algorithm. Computation results show that the flow structure inside the compression chamber is dependent on the orbit angle. The pressure variation inside the compression chamber also shows great dependence on the orbit angle. The pressure variation shows local maxima when the orbiting motion of a scroll directs toward the center of the compression chamber.

  • PDF

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber (커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

The Inflow Characteristics of Fresh Air in the Combustion Chamber having the Radical Injector (라디칼 인젝터를 적용한 연소실의 신기유입특성에 관한 연구)

  • Park, Kweon-Ha;Jeon, Jae-Hyeuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.506-513
    • /
    • 2008
  • The engine containing a radical injector has been studied to improve the performances of efficiency and to reduce the exhaust emissions recently. The engine is far different from general compression ignition engines or spark ignition engines for the concept of combustion process. The inflow characteristic from main chamber into radical chamber during compression stroke is important because the radical chamber must have enough fresh air to generate appropriate radicals. The numerical simulation is performed in each specific shape and the engine speed by using KIVA code. The result shows that the fresh air inflow from main chamber into the radical chamber is the best at 45 degree of the hole angle.

Numerical Study on Combustion Charaterestics in a Constant Volume Combustor Having a Radical Injector (라디칼인젝터를 적용한 정적연소기의 연소특성에 관한 계산적 연구)

  • Jo, Sang-Mu;Jeon, Jae-Hyeuk;Jang, In-Sun;Jeong, Sung-Sik;Park, Kweon-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1309-1316
    • /
    • 2003
  • A premixed-compression-ignition engine has been studied to improve the efficiency and to decrease exhaust emissions. However those systems have some difficulties for controlling combustion process. Radical is an activated chemical species formed by a chemical chain reaction between reactant and product. When the chain reactions occur, the energy bond of species is broken easily by the released radicals. The combustion chamber of the premixed-compression-ingnition engine is consist of a main chamber with lean premixture and a subchamber with rich premixture. Those are connected by narrow cylinderical connections. With ignition start in the subchamber, many different kinds of radical is jetted into the main chamber. The premixed gas in main chamber is quickly burned up by the radical ignition in multi-pionts. In this paper, the combustion phenomena in a constant volume combustor having a radical injector are numerically analyzed. The some constants in the reaction rate equation are adjusted by the experimental results tested in the same geometrical chamber. The code is applied on the two combustors in a wide range of equivalence ratio. The results show that the burning time is much shorter in the combustor having radical injector.

Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine (가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Development of a Measurement System of the Transferred Pressure from Intermittent Pneumatic Compression Device (간헐적공기압박장치의 전달압력 측정시스템 개발)

  • Lee, Wonhee;Seo, Jong Hyun;Kim, Jun;Kang, Seung Ho;Kim, Gook Han;Chung, Seung Hyun;Kim, Kwang Gi;Kang, Hyun Guy
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • A pressure measurement system was developed to verify magnitude and position of transferred pressure on the body surface during the intermittent pneumatic compression (IPC) which is one of the most well-known methods for the prevention of deep vein thrombosis (DVT). Eighty force sensing resistors (FSR) were arranged on a mannequin leg and a hardware controller sensed, digitized, and transferred pressure data every second while IPC was being applied. Finally, sensed pressure data were color coded and visualized on the 3D model with lab-developed software. The pressure data were also saved to files for further analysis. Using this measurement system, the changing pattern of pressure was measured on the mannequin leg by changing both chamber pressure and cuff tightness. As a result, net pressure transferred onto the body surface is dependent on chamber pressure and cuff tightness. Under the same chamber pressure, the tighter a cuff was worn, the wider compressed area was and the shorter compression cycle was. Also transferred pressure was proportional to both chamber pressure and cuff tightness.