• Title/Summary/Keyword: Compressible fluid

Search Result 304, Processing Time 0.027 seconds

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

A Numerical Study on the Flow Characteristics through an Industrial Safety Relief Valve (산업용 안전 릴리프밸브 유동특성에 관한 수치연구)

  • Kang, Sang-Mo;Lee, Bong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.696-704
    • /
    • 2009
  • In this paper, the flow characteristics through an industrial safety relief valve used to protect the crankcase room in a large-sized marine engine have been numerically investigated using the moving-mesh strategy. With the room pressure higher than the cracking one, the spring-loaded disc becomes open and then the air in the room blows off into the atmosphere, resulting in the reduction of the room pressure and then the shutoff of the disc. Numerical simulations are performed on the compressible air flow through the relief valve (${\phi}160mm$) with the initial room pressure (0.11 bar or 0.12bar) higher than the cracking one (0.1 bar). The numerical method has been validated by comparing the results with the empirical ones. Results show that the disc motion and flow characteristics can be successfully simulated using the moving-mesh strategy and depend strongly on the spring stiffness and the flow passage shape. With increasing spring stiffness, the maximum disc displacement decreases and thus the total disc-opening time also decreases. In addition, the flow passage shape makes a significant effect on the velocity and direction of the flow.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

Direct Simulation of Flow Noise by the Lattice Boltzmann Method Based on Finite Difference for Low Mach Number Flow (저 Mach 수 흐름에서 차분격자볼츠만법에 의한 유동소음의 직접계산)

  • Kang, Ho-Keun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.804-809
    • /
    • 2003
  • In this study, 2D computations of the Aeolian tones for some obstacles (circular cylinder, square cylinder and NACA0012 airfoil) are simulated. First of all, we calculate the flow noise generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuation with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. To investigate the effect of the lattice dependence, furthermore, simulations of the Aeolian tones at the low Reynolds number radiated by a square cylinder and a NACA0012 airfoil with a blunt trailing edge at high incidence are also investigated.

  • PDF

Control of the Asymmetric Flow in a Supersonic Nozzle (초음속 노즐에서 발생하는 비대칭 유동의 제어에 관한 연구)

  • Matsuo, Shigeru;Setoguchi, Toshiaki;Hashimoto, Tokitada;Tokuda, Seiya;Nagao, Junji;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Several previous works on rocket nozzle flows have revealed the existence of the transition from FSS to RSS and the occurrence of asymmetric flow associated with the boundary layer separation, which can cause excessive side-loads of the propulsion system. Thus, it is of practical importance to investigate the asymmetric flow behaviors of the propulsion nozzle and to develop its control method. In the present study, the asymmetric flow control method using a cavity system was applied to supersonic nozzle flow. Time-dependent asymmetric flow was experimentally investigated with the rate of change of the nozzle pressure ratio. The results obtained showed that the cavity system installed on nozzle wall would be helpful in fixing the unsteady motions of the boundary layer separation, consequently reducing the possibility of the occurrence of the asymmetric flow.

Vibrations and Stability of Flexible Corotating Disks in an Enclosure (밀폐된 용기 안에서 동시에 회전하는 디스크의 진동과 안정성에 관한 연구)

  • Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.76-84
    • /
    • 2009
  • The vibration and stability of thin, flexible corotating disks in an enclosed compressible fluid is investigated analytically and compared with the results of a single rotating disk. The discretized dynamical system of the corotating disks is derived in the compact form of a classical gyroscopic system similar with a single disk. For the undamped system, coupled structure-acoustic traveling waves destabilize through mode coalescence leading to flutter instability. However, it is found that the flutter regions of the corotating disks are wider than those of a single disk. A detailed investigation of the effects of dissipation arising from acoustic or disk damping is also performed. Finally, in the presence of both acoustic and disk dampings, the instability regions are found and compared with those of a single disk. Although this study does not allow a radial clearance between the disk and the enclosure, the computational frame work of the problem can be expanded to the system having the radial clearance in an enclosure.

Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor (왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Jaeseong;Kim, Haeseung;Lee, Hyojae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

A Theoretical Study on the Fluid-Structure Interaction Due to the Pump in the Pressurized Water Reactor (원자로에서 펌프에 의해 야기되는 유체와 구조물 상호 작용에 대한 이론적 연구)

  • Lee, Kye-Bock;Jong Ryul park
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.710-720
    • /
    • 1995
  • The propagation of pump-induced pressure pulsation in a reactor is important because of the potential for vibration and resultant damage of reactor internals. A hydrodynamic model has been developed to obtain the pressure fluctuation due to the operation of pumps in the annulus(between the core support barrel and reactor vessel of a pressurized water reactor) including the coolant inlet pipe. The mathematical analysis is formulated in accordance with the linearized Navier-Stokes equation by assuming a compressible, inviscid flow. Two regions are considered separately and by coupling the solutions of the inlet pipe and the annulus, the inlet nozzle pressure(pressure at pipe and annulus interface) is to be calculated without assumptions. The geometric parameter effect on the pump-induced pressure pulsation is evaluated. Comparison of predicted and measured inlet nozzle pressure values for each forcing frequency shows good order of magnitude agreement.

  • PDF

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

Numerical Investigation of Aerodynamic Sounds by Vortex-Edge Interaction (Vortex-Edge 의 상호작용에 의한 유동소음의 수치계산)

  • Kang, Ho-Keun;Kim, Jeong-Hwan;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1915-1920
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer impinging on a rigid surface. In this paper we present a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing a conventional FDLB model, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}=23^{\circ}$ . At a stand-off distance ${\omega}$ , the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips.

  • PDF