• Title/Summary/Keyword: Compressible Volume

Search Result 163, Processing Time 0.029 seconds

A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle (축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구)

  • Lee Jun-Hee;Woo Sun-Hoon;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Prediction of Distribution of Solid Volume Fraction in Semi-Solid Materials Based on Mixture Theory (혼합이론에 근거한 반용융 재료의 고상률 분포 예측)

  • 윤종훈;김낙수;임용택
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.399-406
    • /
    • 1999
  • It is more appropriate to treat that the semi-solid mixture as a single phase material that obeys incompressibility in the global sense and to analyze the liquid flow only locally than the approach based on compressible yield criteria. In the present study, a numerical algorithm of updating the solid volume fraction based on mixture theory has been developed. Finite element analysis of simple upsetting was carried out using the proposed algorithm to investigate the degree of macro-segregation according to friction conditions and compressive strain rates under the isothermal condition. The simulation results were compared to experimental results available in reference to test the validity of the currently proposed algorithm. Since the comparison results show a good agreement it is construed that the proposed algorithm can contribute to the development of numerical analysis of determining the solid volume fraction semi-solid processing.

  • PDF

Evaluation of the Aerodynamic Performance of A Hybrid Mesh Based Finite Volume Code

  • ZHENG, H.W.
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.40-43
    • /
    • 2015
  • A hybrid mesh based finite volume compressible flow code (PolySim) has been developed recently. Instead of the simple average method for the gradients of variables at each face, the volume average is applied for the calculation of the viscous flux. What is more, an improved Green Gauss method for the calculation of the gradient is also presented. These two techniques will improve both the accuracy and robustness of the code. The aerodynamic performance of this in-house cell centered code is examined by several widely-used bench-mark test cases. These cases include flows over flat plate and RAE 2822 etc. The comparisons on results between calculation and experiment are conducted. They show that the code can produce good numerical results which agree well with the corresponding experiment data.

Dynamic Response of Pneumatic Transmission Lines (공압 전달관의 동적 응답)

  • 박현우;박종호;신필권;심우건
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.285-294
    • /
    • 1999
  • Transient analysis for compressible fluid flow has been performed experimentally and analytically to study the dynamic characteristics of the end volume transmission lines following a sudden pressure change a its entrance. The numerical method was developed based on the method of characteristics. The sudden pressure at its entrance was generated by rupture of diaphragm in a shock tube. The sudden pressure was used to obtain the response, as input signal for the numerical analysis. The response to the sudden pressure at the end volume was measured using a pressure transducer. The experimental result shows good agreements with the numerical result. The effects of tube length, its diameter and end volume magnitude are evaluated on the responses of the pressure and on the damping factor. It is found that the viscous damping effects on the response through the transmission pipeline becomes larger with increasing pi;eline length and decreasing diameter of the pipe and the fluid-elastic stiffness decreases with increasing the terminal volume. The numerical approach presented in this paper can be very useful in designing the instrument and control system.

  • PDF

A Computational Study of the Fuel-Cell Ejector System (연료전지 이젝터 시스템에 관한 수치해석적 연구)

  • Lee, Jun-Hee;Lee, Hae-Dong;NamKoung, Hyuck-Joon;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method (Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석)

  • Choi Hwan-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

Numerical Study on Droplet Spread Motion after impingement on the wall using improved CIP method (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.109-114
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

  • PDF

Computational Study of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Kim, Heuy-Dong;Kwon, Oh-Sik;Koo, Byoung-Soo;Choi, Bo-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.485-490
    • /
    • 2000
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends form the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

  • PDF

A Study on the Choke Phenomenon of Unsteady Gas Flow through a Critical Nozzle (임계노즐을 통한 비정상 기체유동의 초크현상에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2127-2132
    • /
    • 2003
  • A computational study is performed to better understand the choke phenomenon of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Navier-Stokes equations are solved using a finite volume method. In order to simulate the effects of back pressure fluctuations on the critical nozzle flow, a forced sinusoidal pressure wave is assumed downstream the exit of the critical nozzle. It's frequency is 20kHz and amplitude is varied below 15% of time-mean back pressure. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thereby giving rise to applicable fluctuations of mass flow through the critical nozzle. The effect of the amplitude of the excited pressure fluctuations on the choke phenomenon is discussed in details.

  • PDF