• 제목/요약/키워드: Compressible Flows

검색결과 249건 처리시간 0.028초

가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구 (Study of the Compressible Nozzle Flow in a Gas Circuit Breaker)

  • 정성재;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

비정렬격자와 예조건화 기법을 이용한 저압축성 점성유동해석 (PRECONDITIONED NAVIER-STOKES COMPUTATION FOR WEAKLY COMPRESSIBLE FLOW ANALYSIS ON UNSTRUCTURED MESH)

  • 손상준;안형택
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.79-86
    • /
    • 2013
  • Preconditioned compressible Navier-Stokes equations are solved for almost incompressible flows. Unstructured meshes are utilized for spatial discretization of complex flow domain. Effectiveness of the current preconditioning algorithm, with respect to various Reynolds numbers and Mach numbers, is demonstrated by the solution of canonical problems for incompressible flows, e.g. driven cavity flows.

급축소/확대관을 지나는 압축성 유동의 해석적 연구 (Analytical Study on Compressible Plow through Abrupt Enlargement and Contraction)

  • 김희동;김태호;서태원
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.55-63
    • /
    • 1997
  • 본 연구에서는 기본적인 배관요소 중의 하나인 급축소/확대관을 지나는 압축성 유동을 해석하기 위하여 압축성 유체에 대한 이론계산을 수행하였다. 관 입구에서 유동의 마하수, 단면적 축소 및 확대비 등을 변화시켜, 압축성 효과 및 유동의 초우킹 조건 등을 구하였다. 본 연구의 결과들은 배관계를 설계하는데 기초자료가 될 뿐만 아니라 배관계를 지나는 압축성 유동에 대한 실용적인 계산법으로 활용될 수 있다.

  • PDF

급축소/확대관을 지나는 압축성 유동의 해석적 연구 (Analytical Study on Compressible Flour through Abrupt Enlargement and Contraction)

  • 김희동;김태호;서태원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1997년도 제8회 학술강연회논문집
    • /
    • pp.235-244
    • /
    • 1997
  • The empirical factor and reaction force based on published data were involved to investigate compressible flows through sudden enlargement and sudden contraction passages. Analytical solutions of engineering interest were obtained from one-dimensional steady compressible gas dynamic equations. The effects of compressibility, cross-sectional area ratio, and inlet Mach number on the air flows were discussed with regards to the total pressure loss and flow choking. The present results provide available information necessary ta design the compressible pipe flow systems.

  • PDF

Experimental Investigation of Sonic Jet Flows for Wing/Nacelle Integration

  • Kwon, Eui-Yong;Roger Leblanc;Garem, Jean-Henri
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.522-530
    • /
    • 2001
  • An experimental study of compressible jet flows has been undertaken in a small transonic wind tunnel. The aim of this investigation was to realize a jet simulator in the framework of wing/nacelle integration research and to characterize the jet flow behavior. First, free jet configuration, and subsequently jet flow in co-flowing air stream configuration were analyzed. Flow conditions were those encountered in a typical flight condition of a generic transport aircraft, i.e. fully expanded sonic jet flows interacting with a compressible external flowfield. Conventional experimental techniques were used to investigate the jet flows-Schlieren visualization and two-component Laser Doppler Velocimetry (LDV). The mean and fluctuating properties were measured along the jet centerline and in the symmetric plane at various downstream locations. The results of two configurations show remarkable differences in the mean and fluctuating components and agree well with the trend observed by other investigators. Moreover, these experiments enrich the database for such flow conditions and verify the feasibility of its application in future aerodynamic research of wing/nacelle interactions.

  • PDF

UNSTRUCTURED MOVING-GRID FINITE-VOLUME METHOD FOR UNSTEADY SHOCKED FLOWS

  • Yamakawa M;Matsuno K
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.24-30
    • /
    • 2005
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be time-dependently changing and deforming according to the movement of the boundaries when we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

압력장에 기초한 수치해석 방법을 이용한 압축성 유동장의 수치해석 (Calculations of Compressible Flows Using a Pressure Based Method)

  • 임홍식;사종엽;강동진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.27-32
    • /
    • 1996
  • A previously developed pressure based calculation procedure for incompressible flows was modified and applied to transonic and supersonic flows. It uses pressure as a primary variable in preference to density and body fitted coordinate and non-staggered grid system. The discretized momentum equations were rearranged as a system of equations with respect to covariant velocity components. Three different discretization schemes, QUICK hybrid and first order upwind, were used to approximate the convective terms and compared. Present approach was tested far two transonic flow and one supersonic flow problems. Comparison with previous results show that present approach can be used as a solver for compressible flows.

  • PDF

MLP기법을 적용한 천수흐름의 수치모의 (Numerical Simulation of Shallow Water Flow Using Multi-dimensional Limiting Process (MLP))

  • 안현욱;유순영
    • 대한토목학회논문집
    • /
    • 제32권2B호
    • /
    • pp.123-130
    • /
    • 2012
  • 천수방정식의 수치모형에 MLP(Multi dimensional Limiting Process)기법을 적용한 후 수치모의를 통해 MLP의 수치 진동 제어 성능을 검증하였다. MLP기법은 2, 3차원에서 기존의 TVD 제어자(limiter)들보다 안정적이며 정확한 수치모의를 가능하게 한다. 다차원에서 정확하고 안정적인 수치모의가 가능하도록 개발된 MLP기법은 압축성 유체를 표현하는 2, 3차원 오일러 방정식에 적용되어 기존의 제어자들에 비해 그 뛰어난 성능이 검증된 바 있다. 하지만 천수방정식에 적용된 예는 없으며, 이에 본 연구는 천수방정식에 MLP를 적용하고 천수방정식 수치모형 검증에 주로 사용되는 수치모의를 통해 MLP의 진동 제어 성능을 검증하였다. 모의 결과, MLP는 2차원 천수방정식에 있어서도 기존의 제어자들과 비교하여 수치진동을 보다 잘 제어하는 것으로 판단된다. MLP 사용으로 인해 불연속면 근처에서 정확도가 향상되었고 수치진동이 발생하지 않아 보다 안정적인 모의가 하게 되었다.

압축성 회전 유동에서의 비점성 Taylor-Proudman column 유동 (Taylor-Proudman Column Flows in a Compressible Rotating Fluid)

  • 박준상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.27-32
    • /
    • 2001
  • A study has been made of the condition to maintaining Taylor-Proudman column flows in a compressible rotating fluid, which is driven by small mechanical and/or thermal perturbations imposing on the container wall in the basic state of isothermal rigid body rotation. The Rossby and system Ekman numbers are assumed to be very small. The Taylor-Proudman column flow can be produced when energy parameter, e, becomes constant on the whole flow region. Energy balance concept, related to energy parameter, and its physical interpretation are given with comprehensive discussions.

  • PDF

Preconditioning을 이용한 전속도 영역에 대한 압축성 유체유동해석 (A Time-Derivative Preconditioning Method for Compressible Flows at All Speeds)

  • 최윤호
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1840-1850
    • /
    • 1994
  • Enhancement of numerical algorithms for low speed compressible flow will be considered. Contemporary time-marching algorithm has been widely accepted and applied as the method of choice for transonic, supersonic and hypersonic flows. In the low Mach number regime, time-marching algorithms do not fare as well. When the velocity is small, eigenvalues of the system of compressible equations differ widely so that the system becomes very stiff and the convergence becomes very slow. This characteristic can lead to difficulties in computations of many practical engineering problems. In the present approach, the time-derivative preconditioning method will be used to control the eigenvalue stiffness and to extend computational capabilities over a wide range of flow conditions (from very low Mach number to supersonic flow). Computational capabilities of the above algorithm will be demonstrated through computation of a variety of practical engineering problems.