• Title/Summary/Keyword: Compressible Flows

Search Result 249, Processing Time 0.025 seconds

Multi-dimensional Finite-Volume Flow Computation Using Unstructured Grid (비정렬격자 다차원 FVM유동계산)

  • Kim J. K.;Chang K.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.182-187
    • /
    • 1995
  • The present paper explains some advancement made by the authors for the compressible flow computation of the Euler equations based on the unstructured grid and vertex- centered finite volume method. Accurate solutions to the unsteady axisymmetric shock wave propagation problems and three-dimensional airplane flows have been obtained by a high-order upwind TVD and FCT schemes. Unstructured grid adaption is made for the unsteady shock wave problems by the dynamic h-refinement/unrefinement procedure and for the three-dimensional steady flows by the Delaunay point-insertion method to generate three-dimensional tetrahedral mesh enrichment. Some physics of the shock wave diffraction phenomena and three-dimensional airplane flow are discussed.

  • PDF

One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel (고속철도 터널내를 전파하는 압축파의 일차원 수치해석)

  • 김희동;엄용균;송미일태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

Performance Evaluation and Numerical Calculation of Flows through a Vaned Diffuser for Centrifugal Compressor (원심압축기용 베인 디퓨저 내부유동의 수치해석 및 성능평가)

  • Choi, Yun-Ho;Kang, Shin-Hyoung;Lee, Jang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1296-1309
    • /
    • 1999
  • A three dimensional compressible Navier-Stokes code is developed to analyze flowfields and performance of a vaned diffuser in a centrifugal compressor. It employs scalar implicit approximate factorization, finite volume formulation, second order upwind differencing and a two-equation $q-{\omega}$ turbulence model based on the integration to the wall. Pressure recovery and loss coefficients of a vaned diffuser are evaluated using a developed computer code. The simulated three dimensional flows show how through flow structure affects pressure recovery performance and loss coefficients of a vane for design and off-design inlet flow angles. Development of complex three dimensional flow over the inlet region and leading edge are very influential to the overall flow and performance.

Convergence Study of $k-{\omega}$ Turbulence Equations for Compressible Flows (압축성 유동을 위한 $k-{\omega}$ 난류방정식의 수렴성 연구)

  • Park Soo Hyung;Sung Chun-ho;Kwon Jang Hyuk;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.31-34
    • /
    • 2002
  • An efficient implicit multigrid method is presented for the Navier-Stokes and $k-{\omega}$ turbulence equations. Freezing and limiting strategies are applied to improve the robustness and convergence of the multigrid method. The eddy viscosity and strongly nonlinear production terms of turbulence are frozen in the coarser grids by passing down the values without update of them. The turbulence equations together with the Navier-Stokes equations, however, are consecutively solved on the coarser grids in a loosely coupled fashion. A simple limit for k is also introduced to circumvent slow-down of convergence. Numerical results for the unseparated and separated transonic airfoil flows show that all computations converge well without any robustness problem and the computing time is reduced to a factor of about 3 by the present multigrid method.

  • PDF

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Laminar Diffusion Flame in the Reacting Mixing Layer (반응혼합층의 층류확산화염)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

EXPERIMENTAL AND COMPUTATIONAL STUDIES ON HYSTERISYS PHENOMENON OF SUPERSONIC COANDA WALL JETS

  • Kim, Heuy-Dong;Kweon, Oh-Sik;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.514-519
    • /
    • 2000
  • Recently a considerable interest is being concentrated on industrial applications of supersonic Coanda wall jets, but the flow physics are not still understood well. It is of practical importance to evaluate the effectiveness of supersonic Coanda wall jet devices fer such industrial purposes. In the present work, experiments and computations were performed to Set a better understanding of the supersonic Coanda jet physics. The experiments were made using a small blow-down wind tunnel. The operating pressure ratio and the Coanda surface configuration were changed to investigate their influences on the wall jet flows. Two-dimensional Navier-Stokes computations were performed using a TVD finite volume scheme to effectively capture the important wave structures of supersonic Coanda jet flows. Both experimental and computational results showed several important hysterical features of the supersonic Coanda wall jets; the attachment and detachment of supersonic Coanda jet were strongly dependent on the change processes of the operating pressure ratio and the detailed flow configuration.

  • PDF

A Study of Unsteady Aerodynamic Characteristics of an Accelerating Aerofoil (가속익의 비정상 공력특성에 관한 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.556-561
    • /
    • 2003
  • Flight bodies are subject to highly unstable and severe flow conditions during taking-off and landing periods. In this situation, the flight bodies essentially experience accelerating or decelerating flows, and the aerodynamic characteristics can be completely different from those of steady flows. In the present study, unsteady aerodynamic characteristics of an aerofoil accelerating at subsonic speeds are investigated using a computational method. Two-dimensional, unsteady, compressible Navier-Stokes simulations are conducted with a one-equation turbulence model, Spalart-Allmaras, and a fully implicit finite volume scheme. An acceleration factor is defined to specify the unsteady aerodynamics of the aerofoil. The results show that the acceleration of the subsonic aerofoil generally leads to a variation in aerodynamic characteristics and it is more significant at angles of attack.

  • PDF