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Abstract

An efficient implicit multigrid method is presented for the Navier-Stokes and k-u turbulence equations. Freezing and
limiting strategies are applied to improve the robustness and convergence of the multigrid method. The eddy viscosity and
strongly nonlinear production terms of turbulence are frozen in the coarser grids by passing down the values without update of
them. The turbulence equations together with the Navier-Stokes equations, however, are consecutively solved on the coarser grids
in a loosely coupled fashion. A simple limit for k is also introduced to circumvent slow-down of convergence. Numerical
results for the unseparated and separated transonic airfoil flows show that all computations converge well without any robustness

problem and the computing time is reduced to a factor of about 3 by the present multigrid method.

1. IntrodUction

Turbulent flow calculations have become increasingly important
in aerodynamic applications, Practically, simple algebraic turbulent
models have been used to obtain the eddy viscosity because of
simplicity and efficiency[1]. In view of accuracy, it is desirable to
solve the transport equations for the turbulent variables[2], such as
the turbulent kinetic energy(k) or the specific dissipation rate( ¢).

In the present work, the compressible Navier-Stokes equations
and k-0 turbulence model equations{3,4] are considered. It has
advantages in that the model does not require damping functions
and no distance from the wall needs to be defined. It also enables
us to use freestream values as initial conditions[4] for practical
applications. Despite many efforts have been devoted to accelerate
the convergence of two-equation low-Reynolds number models[$,6],
Navier-Stokes calculations with two-equation models consume
excessive computing time.

Multigrid convergence acceleration[7,8] is the best alternative
to obtain cost-effective with  two-equation models.
However, there are several difficulties in implementation of the
multigrid method. Most of all, special treatments for stiff source
terms are required at coarser grids. If the terms are not properly
treated, the solutions diverge in most cases. In this work, the eddy
viscosity and production terms are frozen in coarser grids by
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passing down the values without a new calculation[6]. Next, the
numerical conditions may lead to unphysically low values of @
variables. Physical limit for w is applied to avoid this situation
[5]. A simple limit for k values is also introduced to preserve the
value of the eddy viscosity. Through this process, nearly linear
convergence can be obtained at higher level multigrid.

To demonstrate the efficiency of the multigrid algorithm for
the k-0 equations, the transonic flows[9] past RAE2822 airfoil
are computed and compared with the experimental data.

2. Numerical Method
2.1 Solution algorithms

The 2-dimensional compressible Navier-Stokes equations and k-
o turbulence equations[3] are considered:
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where 1 is the molecular viscosity determined by Sutherland'
law, and pr is the turbulence eddy viscosity defined by
rr= _‘i)k 4)
The source vector of Eq. (1) is composed of the production
rates of k¥ and o, denoted by Pr and P, and the destruction
rates of them, D; and D,

. 0U;
S:(Pk_Dk)— T gy — B pkw
P(z)—D(u au (5)
( b )T*zj axi _Bpwz

The closure constants are
Op = 0,= 2.0
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The goveming equations in the physical coordinates system are
transformed onto the computational coordinates and Eq. (1) 1is
discretized with the cell-centered finite volume method. The flux
residual Ry of the discretized governing equations consists of the
inviscid and viscous parts of numerical flux at the cell faces. In
the present study, flux difference splitting(FDS) is used for upwind
method and the 2nd order upwind TVD scheme with the minmod
limiter is adopted to improve the solution accuracy[8]. The 9-point
central differencing is applied to obtain the variable gradients of
the viscous flux.

In this work, the DADI(Diagonalized-ADI) method is applied
to find steady-state solutions[8]. For k-0 turbulence equations, the
source vector of Eq. (5) must be implicitly treated. The
contributions of the turbulent dissipation terms, Dy and D,, are
added in the implicit parts to increase the diagonal dominance [5].
Therefore, the approximate Jacobian of the source terms can be
expressed as:

e =2 [ Max(©, % DV)+ B w 0
J
0 Max(0, L DV) + B

where DV denotes the divergence V - u. The resulting scheme
for turbulence equations is only a scalar ADI method if the DADI
procedure is applied.

A loosely coupled algorithm is wused for integrating the
Navier-Stokes and k-0 equations separately. When a time stepping
method is applied in loosely coupled fashion, the convergence of
k-0 equations lags behind the Navier-Stokes equations. Several
algorithms have been devised up to now, such as multiple
iterations, to reduce the lagging[5]. In the present loosely coupled
implicit algorithm, the k-0 equations are marched only one time
stepping for each Navier-Stokes iteration because more iterations do
not reduce the total computing time for the present test cases.

Albeit the implicit treatment of the source term greatly
improves the robustness involved with the positivity of the
turbulence  variables, the © equations cannot preserve the
positivity constantly. A lower limit for © is imposed for every
iteration after the turbulence equations are solved[S]:

(ow) sy = oV P, @®)

(7
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2.2 Multigrid method

The acceleration mechanisms of multigrid method are known
as the high frequency damping and the fast wave propagation in
coarser grids[7,8]. To this end, different number of time-stepping
as well as CFL numbers are applied according to the gnid level in
the V cycle algorithm. See reference[8} for more details.

Multigrid method for the turbulence equations requires careful
approach because of their high stiffness which results from the
nonlinear source terms, Eq. (5). It has been noted that the strongly
nonlinear terms cause divergence of the computation since they
largely change the gradients in the flow and turbulence variables.
As such it is important to freeze the nonlinear terms to preserve
the turbulence variables in the coarse levels[5,6]. Therefore Ps and
DV terms are calculated only on the finest grid and restricted as
the frozen values to the coarser grids:

(Py) o 2V, (Pd)h/VZh
(DV) g = 2V, (DV) [ Vg

In the present study, the eddy viscosity is also restricted in
the same way. Freezing the eddy viscosity helps the robust
convergence especially when the freestream values are used for the
initial conditions.

When no limit for % is applied on the coarse grids,
slow-down of the convergence was found. This slow-down is
related with the large level of the dissipation rate © at the
farfield shear region. Without suitable choice of the freestream
values, very low values of & can be predicted consequently.
Therefore, a simple limit for £ is suggested as follows:

(0F) min =0.01%(0k) o (10)
Because this limit is applied only in the coarse grids, little
change is shown for solution accuracy in the finest grid.

©)

2.3 Boundary conditions

At the solid walls, no-slip conditions for velocities are applied
and the density and energy are extrapolated from the interior cells.
The value of & is set to zero at the wall. Since the specific
dissipation rate © is theoretically infinite at the wall, it is required
that its asymptotic value 1is imposed to the several interior
points(3,4]. In this study, the boundary value of @ is specified as:

wmu=193—u80;521) ~ 0, (i)

where d; is the distance of the first cell center from the wall and
w; is the value of the first interior cell[5)

The freestream % and @ are determined by using the
estimation proposed by Menter{4].

3. Numerical Results

The present method is applied to the turbulent transonic flows
past the RAE2822 airfoil. A C-type computational grid is used.
The farfield boundary 1is located at 20 chord length away.
Computations are performed on the PC-cluster with 4-Pentium II
400MHz CPU. The first cell centers from the wall are located so



that y+ is set to about 1{3]

Table 1 shows the used freestream conditions[9). Computations
are performed with the widely used Baldwin-Lomax(B-L) algebraic
model[1] and the k-0 turbulence model[3-5]. For the B-L model
used, the turbulent eddy viscosity is frozen in the coarse grid to
exclude the convergence stagnation when the normalized density
residual is dropped below 107, The measured and computed lift
and drag coefficients are compared in Table 2. The coefficients
agree well with the experimental data for the unseparated
flows(Case 1 and 6). The present k-0 turbulence model gives the
excellent agreement for all freestream conditions.

Figure 1 displays the pressure coefficient distributions for each
case. Cases | and 6 represent the suberitical and unseparated
supercritical flows. Case 10 is one of the separated flows. As
shown, the results with B-L and k-w models agree well with
experimental data and only a difference is found in Case 10.

Figure 2 represents comparisons of the convergence histories
for Case 1. When the normalized L2 norm is reduced to 9 orders
of magnitude, the 4-level multigrid DADI method takes 693 cycles
while single grid takes 4219 cycles, as shown in Fig. 2-(a). As
the multigrid level increases, the number of iteration decreases.
Fig. 2-(b) shows that the convergence rate of the B-L model is
nearly same to that of the k-w models, while the computing time
is less than that of k-w, of course. It is noted that the
convergence rates are reduced at about six order of magnitude for
3 and 4 level multigrid methods. If Eq. (10) is not used, the
slow-down is so severe that the converged solution of the k
equations cannot be obtained.

Figure 3 displays the convergence histories for Case 6 with k-
0 turbulence model. The convergence trends are similar to Case
1. The L2 norms of density, k, and w are shown in Fig. 3-(b).
For the single grid calculation, all variables converge with the
nearly same convergence rate after the error is reduced to 10°.
The 4-level multigrid convergence of k equations slows down
foremost and impedes others. As the convergence of Case 1, the
limit for k is important to obtain the converged solutions.

The convergence for the separated transonic flow is displayed
in Fig. 4. It has been found that the steady-state solution exists
for this freestrcam condition[9]. Although the efficiency of the
multigrid for Case 10 is lower than those for Cases 1 and 6, no
oscillation nor stagnation of the convergence arc found for all
cases. On the contrary, the convergence with B-L model severely
oscillates and slows down for all levels of multigrid.

4. Conclusions
An efficient multignd method with DADI time integration

method is presented for the Navier-Stokes and k-u turbulence
equations. The equations are solved separately on the coarser grids

Case M. Qe CLor Rex 107
I 0.676 2.40 1.93 57
6 0.725 292 2.54 6.5
10 0.750 3.19 281 6.2

Table 1. Freestream conditions for the test cases.

in a loosely coupled fashion. To this end, strong nonlinear source
terms are restricted as the frozen variables to the coarser grids.
Limits for turbulence variables can be simply imposed in the
implicit scheme. Numerical results show that the present freezing
and limiting strategies help fast convergence and robust computation
of the k-0 turbulence equations. Especially for the separated airfoil
flows, the present multigrid DADI method gives good convergence
without any robustness problem.
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Case CL Co
Case 1 exp 0.566 0.0085
B-L 0.574 0.0082
k-0 0.563 0.0084
Cse 6 exp 0.743 0.0127
B-L 0.762 0.0126
k-0 0.745 0.0125
Case 10 exp 0.743 0.0242
B-L 0.828 0.0283
k-0 0.768 0.0252

Table 2. Lift and drag coefficients for each case.
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Fig. 1-(a). Wall pressure coefficient distributions
for Case 1.
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Fig. 1-(b). Wall préssure coefficient distributions
for Case 6.

Fig. 1-(c). Wall pressure coefficient distributions
for Case 10.
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Fig. 2-(a). Case | : Comparisons of the
convergence histories with multigrid levels.

Fig. 2-(b). Case 1 : Comparisons of. the
convergence histories with turbulent models.
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Fig. 3-(a). Case 6 : Comparisons of the
convergence histories with multigrid levels.

Fig. 3-«(b). Case 6 : Comparisons of the
convergence histories with variables.
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Fig. 4. Case 10 : Comparisons of the
convergence histories with turbulent models.



