• Title/Summary/Keyword: Compressible Boundary Layer

Search Result 92, Processing Time 0.022 seconds

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Transition Prediction of compressible Axi-symmetric Boundary Layer on Sharp Cone by using Linear Stability Theory (선형 안정성 이론을 이용한 압축성 축 대칭 원뿔 경계층의 천이지점 예측)

  • Park, Dong-Hoon;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.407-419
    • /
    • 2008
  • In this study, the transition Reynolds number of compressible axi-symmetric sharp cone boundary layer is predicted by using a linear stability theory and the -method. The compressible linear stability equation for sharp cone boundary layer was derived from the governing equations on the body-intrinsic axi-symmetric coordinate system. The numerical analysis code for the stability equation was developed based on a second-order accurate finite-difference method. Stability characteristics and amplification rate of two-dimensional second mode disturbance for the sharp cone boundary layer were calculated from the analysis code and the numerical code was validated by comparing the results with experimental data. Transition prediction was performed by application of the -method with N=10. From comparison with wind tunnel experiments and flight tests data, capability of the transition prediction of this study is confirmed for the sharp cone boundary layers which have an edge Mach number between 4 and 8. In addition, effect of wall cooling on the stability of disturbance in the boundary layer and transition position is investigated.

Matching inviscid and boundary layer method for incompressible and compressible flows (비압축성과 압축성 유동에 있어서 비점성 유동과 경계층 유동의 결합)

  • Sohn, Chang-Hyun;Moon, Su-Yeon;Lee, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1966-1971
    • /
    • 2003
  • Matching inviscid and boundary layer methods are developed for hypersonic flow with thick boundray layer. The new equations match all the boundary layer properties with a variation in the inviscid solution near the edge, except for the normal velocity. Computational comparison are performed for incompressible and compressible flows over a flat plate. Results from the present method are compared with Navier-Stokes solutions. The present results are in good agreement with Navier-Stokes solutions. They show that the new technique can provide improved heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are important.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Nonlinear Waves of a Two-Layer Compressible Fluid over a Bump

  • Kim H. Y.;Choi J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.113-119
    • /
    • 2000
  • Two-dimensional steady flow of two immiscible, compressible fluids are considered when the temperature of each layer is constant. Both upper and lower fluids are bounded by two horizontal rigid boundaries with symmetric obstruction of compact support at the tourer boundary. By using asymptotic method, we derive the forced K-dV equation governing interfacial wave. Various solutions and numerical results are presented.

  • PDF

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF

Attenuation of quasi-Lamb waves in a hydroelastic system "elastic plate+compressible viscous fluid+rigid wall"

  • Akbarov, Surkay D.;Negin, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.443-459
    • /
    • 2022
  • The paper studies the dispersion and attenuation of propagating waves in the "plate+compressible viscous fluid layer" system in the case where the fluid layer flow is restricted with a rigid wall, and in the case where the fluid layer has a free face. The motion of the plate is described by the exact equations of elastodynamics and the flow of the fluid by the linearized Navier-Stokes equations for compressible barotropic Newtonian viscous fluids. Analytical expressions are obtained for the amplitudes of the sought values, and the dispersion equation is derived using the corresponding boundary and compatibility conditions. To find the complex roots of the dispersion equation, an algorithm based on equating the modulus of the dispersion determinant to zero is developed. Numerical results on the dispersion and attenuation curves for various pairs of plate and fluid materials under different fluid layer face conditions are presented and discussed. Corresponding conclusions on the influence of the problem parameters on the dispersion and attenuation curves are made and, in particular, it is established that the change of the free face boundary condition with the impermeability condition can influence the dispersion and attenuation curves not only in the quantitative, but also in the qualitative sense.

Numerical study on attenuation and distortion of compression wave propagation into a straight tube (직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.