• Title/Summary/Keyword: Compressible Flow

Search Result 829, Processing Time 0.029 seconds

A Study on the Improvement of Flow Characteristics of the Glove Valve for Compressible Fluid (압축성 유체용 글로브 밸브의 유량특성 향상에 관한 연구)

  • Bae, Ji Won;Chung, Woo Young;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2019
  • Glove valves are used for various purposes in the process control field because such valves enable easy control of temperature and pressure. However, such valves are associated with significant loss of pressure and also have the disadvantage of complicating the shape of the cage or plug to facilitate linear flow rate change. In this paper, the shape of the plug, one of the valve flow control elements, was designed to improve the flow characteristics of the glove valve, and then CFD analysis was performed using compressible fluid. The numerical analysis results of the glove valve were analyzed according to the opening ratio and the pressure ratio of the valve. From these results, it was found that the proper notch on the side of the plug contributed to reducing the energy loss of the fluid through the valve and improving the linearity of the valve.

A Study of the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (천음속 습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek Seung-Cheol;Kwon Soon-Bum;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.161-164
    • /
    • 2002
  • In the present study, a passive control method, using the porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwind-Lomax turbulence model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure losses of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil, as well. It is also found that the location of the porous ventilation significantly influences the control effectiveness.

  • PDF

The Effect of Annular Slit on a Compressible Spiral Jet Flow (스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구)

  • Cho, Wee-Bun;Baek, Seung-Cheul;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

A Fundamental Study of the Supersonic Microjet Flow (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • 정미선;김현섭;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed between 0.2 and 1.25 to obtain both the under- and over-expanded flows at the exit of the micronozzle. and Reynolds number Re is changed between 600 to 40000. For both laminar and turbulent microjet flows, sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

A Computational Study for the Discharge Coefficient of a Film-Cooling Hole (Film-Cooling Hole의 유출계수에 관한 수치해석적 연구)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 2003
  • Computational study using the 2-dimensional, compressible, Navier-Stokes equations is performed to predict the discharge coefficient of air flow through a film-cooling hole. In order to investigate the effect of internal/external flows on discharge coefficient, the present computational results which are obtained for three flow cases, only external flow, only internal flow, and no flow, are compared with experimental ones. It is found that the computational results predict the discharge coefficient of the film-cooling hole in a reasonable accuracy and the external crossflow reduces the discharge coefficient, while the internal crossflow increases the discharge coefficient in a range of momentum flux ratio $I_{c-jet}$ > 1 due to the total pressure loss and boundary layer effect.

AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD (내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자)

  • Baek, C.;Kim, M.;Choi, S.;Lee, S.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

Preconditioned Multistage Time Stepping for the Multigrid Method (다중 격자 기법을 위한 예조건화된 다단계 시간 전진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.127-133
    • /
    • 2001
  • In this paper, the preconditioned multistage time stepping methods which are popular multigrid smoothers is studied for the compressible flow calculations. Fourier analysis on the local time stepping and block-Jacobi preconditioned residual operators is performed using the linearized 2-D Navier-Stokes equations. It fumed out that block-Jacobi preconditioner has better performance in eigenvalue clustering. They are implemented in the 2-D compressible Euler and Wavier-Stokes calculations with multigrid methods to verify that the block-Jacobi preconditioned multistage time stepping shows better performance in convergence acceleration.

  • PDF

Convergence Acceleration Methods for the Multigrid Navier-Stokes Computation (다중 격자 Wavier-Stokes 해석의 수렴성 증진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.35-38
    • /
    • 2002
  • The convergence acceleration methods for the compressible Wavier-Stokes equations are studied ,which are multigrid method and implicit preconditioned multistage time stepping method. In this paper, the performance of implicit preconditioning methods are studied for the full-coarsening multigrid methods on the high Reynolds number compressible flow computations. The effect of numerical flux on the convergence are investigated for the inviscid and viscous calculations.

  • PDF