• Title/Summary/Keyword: Compressed natural gas (CNG)

Search Result 111, Processing Time 0.024 seconds

A improvement performance and test result of traction motor for Bimodal low floor vehicle (바이모달 저상굴절차량용 견인전동기 성능 개선 및 평가)

  • Choi, Yeol-Jun;Park, Yeong-Ho;Kim, Chul-Ho;Choi, Jong-Mook;Bae, Chang-Han;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2006-2010
    • /
    • 2008
  • This paper deal with the improvement performance and test result of traction motor for Bimodal low floor vehicles that are CNG(Compressed Natural Gas) hybrid bus. The improvement performance concept of the traction motor is studied in terms of electrical characteristics and mechanical construction. Finally, this paper introduces the result of the traction motor test for low floor vehicles, and mentioned the detail design concept of traction motor.

  • PDF

Trends of Green Policies of Biogas Renewable Technology using POME in Malaysia (말레이시아 팜오일폐수 POME(Palm Oil Mill Effluent)를 이용한 바이오가스 신재생에너지기술 그린정책 동향)

  • Park, Young Gyu
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.571-586
    • /
    • 2018
  • The Malaysian biogas upgrading technologies and policies were examined. In Malaysia, the regulation of palm oil mill effluent (POME) has been enforced to reduce the biochemical oxygen demand to 20 ppm and the biogas capture in the palm oil mills have been recently enforced for renewable energy. A huge amount of organic waste is produced from POME, and 80 million tons from palm oil trees, every year. Due to the renewable energy trends, the Malaysian government is modifying the use of biogases as fuels in favor of their conversion into compressed natural gas (CNG) and other chemicals; various green policies are being promoted because of many advantages of the organic substances. The Korean policies for biogas are a good model for exporting environmental plants after upgrading the digestion and purification technologies. Therefore, this article introduces the current status of POME and biogas production in Malaysia, it could encourage creating a new market for biomethane.

Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines (기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정)

  • 심한섭;이강윤;선우명호;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

A Study on the Combustion Characteristics of a Generator Engine Running on a Mixture of Syngas and Hydrogen (발전용 합성가스 엔진의 수소 혼합 비율에 따른 연소 특성 연구)

  • Park, Seung-Hyun;Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.693-699
    • /
    • 2011
  • Internal combustion engines running on syngas, which can be obtained from biomass or organic wastes, are expected to be one of the suitable alternatives for power generation, because they are environment-friendly and do not contribute to the depletion of fossil fuels. However, syngas has variable compositions and a lower heating value than pure natural gas, owing to which the combustion conditions need to be adjusted in order to achieve stable combustion. In this study, a gas that has the same characteristics as syngas, such as low heating value (LHV), was produced by mixing $N_2$ with compressed natural gas (CNG). In addition, this study investigates the combustion characteristics of syngas when it is mixed with hydrogen in a ratio ranging from 10% to 30% with a constant LHV of total gas.

Effect of Low Calorific Natural Gas on Performance and Emission Characteristics of Engine (저발열량 천연가스가 엔진 성능 및 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1129-1135
    • /
    • 2013
  • In this, three types of natural gas were employed to investigate the effect of low-calorific natural gas on the performance of and emissions from a heavy-duty CNG engine. The performance and emission characteristics were analyzed by conducting a full-load test, WHSC mode test, and WHTC mode test. The results showed that the torque of low-calorific natural gas with $9,800kcal/Nm^3$ of higher heating value decreased by 4.4 compared to that of the current natural gas with $10,400kcal/Nm^3$ of heating value. With low-calorific fuels, CO, $CO_2$, and $NO_x$ emissions decreased. However, THC emissions increased. According to the WHSC and WHTC mode test results, the thermal efficiency increased and the emission characteristics showed a similar trend to the full-load test results. Low-calorific natural gases cause a decrease in torque at full-load operation conditions and an increase in hydrocarbon emissions.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

Air Pollutants Control Technique Trends for Transportation Sources in Korea (우리나라 이동오염원의 제어기술의 동향과 발전방안)

  • Kim, Jeong-Soo;Eom, Myung-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.477-485
    • /
    • 2013
  • The major source of harmful air pollutants in Korea have been shifted as economy grows. Particulate matter(PM) and Sulfur dioxide ($SO_2$) emitted from industries and coal-fired domestic sectors were important pollutants in 1970's and later industrializing period of Korea. Then the characteristic of pollution was changed into so-called "developed country type pollution". Vehicles have been responsible for significant amount of Nitric oxide ($NO_x$) pollution and consequent Ozone formation in urban area since 1990's. Variety of control measures have been introduced to deal with the vehicle emissions in Seoul Metropolitan Area (SMA). Emission control technologies have successfully reduced pollutants from vehicles. Three-way catalyst for vehicles fueled by gasoline and liquefied petroleum gas (LPG), for example, has achieved large amount of pollutants. Compressed natural gas (CNG) urban bus have penetrated existing diesel bus market and reduces PM and $NO_x$ emissions in many Korean cities. However, diesel vehicles are still reaming as a critical emission source of urban area. Diesel vehicles gain more popularity than ever because of their better fuel efficiency and driving power. Unfortunately, it is widely known that the pollutant emissions of diesel vehicles are much larger than those of gasoline and LPG vehicles. In this note, we briefly introduce the trends of emission control strategies which are accomplished by automotive industries for about last ten years. Emission regulation, cleaner fuel, diesel particulate filter (DPF) and other measures are discussed from technical as well as legislative perspectives.

비활성 가스제너레이터 성능분석

  • 김수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.14-14
    • /
    • 1999
  • 비활성 가스제너레이터는 가스터빈 추진기관 및 기타 열기관을 이용하여 연소가 되지 않는 저온의 공기를 생산하는 기계장치를 말하며 이러한 저온의 비활성 기체를 화재 지역에 분사하는 경우 기존의 소방수를 이용한 화재 진압방식보다 매우 효율적으로 화재진압에 사용되어 질 수 있다. 일반적으로 민항기 등의 가스터빈 추진 기관에서 배기되는 기체내에는 터빈입구온도(TIT : Turbine Inlet Temperature)및 초과공기지수(Excess Air Coefficient)에 따라 다르게 나타나지만 TIT가 1500$^{\circ}$K인 경우 약 13-14%정도의 산소가 잔존하는 것으로 알려져 있다. 따라서 본 연구에서는 가스터빈 및 열교환 시스템 그리고 터빈 1단 등의 시스템 조합율을 통하여 대기 중의 기체의 온도를 영하 2$0^{\circ}C$ 및 산소함유량을 약 5%수준까지 낮춤으로서 이를 대형 화재 진압에 사용하기 위한 연구이다. 비활성 가스제너레이터에 사용하는 연료로는 Kerosene 및 CNG(Compressed Natural Gas)등이 사용될 수 있으며, 유량이 8.1kg/sec인 터보축 가스터빈 엔진을 사용하는 경우 18750㎥ 부피의 비활성기체를 생산하는데 Kerosene 연료가 약 1톤(200$ 이하)이 필요한 것으로 계산되며 이에 소요되는 시간도 약 52분에 지나지 않는 것으로 계산되었다. 만일 50kg/sec의 보다 큰 가스터빈 엔진을 사용하는 경우 약 9분 정도가 필요한 것으로 계산되었다. 사용되는 가스터빈은 압축비가 15, 열교환기의 효율이 $\varepsilon$=0. 그리고 최종 터빈 1단의 팽창비가 1.25가 적합한 것으로 계산된다. 연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF