• Title/Summary/Keyword: Compressed Air Launcher

Search Result 3, Processing Time 0.017 seconds

Development of 1/60th Scale Moving Model Rig Using the Compressed Air Launcher and One-Wire Guidance System of Train Model (압축공기 발사기에 단선 와이어 유도방식을 적용한 1/60축척 터널주행 열차모형 시험기 개발에 대한 연구)

  • Kim, Dong-Hyeon;O, Il-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.634-644
    • /
    • 2001
  • The test facility of a 1/60-scale model for train-tunnel systems has been recently developed to investigate the effects of tunnel portal shapes, hood shapes and air-shafts for reducing the micro-pressure waves radiating towards the surroundings from the tunnel exit. The present test rig has been advanced from a 1/70-scale facility at NLR in Netherlands. The NLR test rig has the two-wise guidance system that needs two ears attached on the external surface of a model train nose. Therefore, their train models have irregular nose shapes. The main characteristics of the present facility are that the train model is guided by only one wire from the compressed air launcher to the absorber parts of test facility and the wire guidance hole is located at the axial center of a train model. In the present test rig, after a train model is launched, the air jet from the launcher does not enter the tunnel model. Experimental results were compared with numerical predictions to prove the performance of the test facility.

The Result in Quality Management Activity of Propellant and Compressed Gases during the Operation of KSLV-I (KSLV-I 운용에서의 추진제 및 고압가스 품질관리 활동 결과)

  • Jung, Young-Suk;Kang, Sun-Il;Oh, Seung-Hyub;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • This paper is about the results in Qualification Management activity performed between the Autonomous Test(AT) season(August. 2008) of Launch Complex and the 2nd flight test season(June. 10, 2010) of KSLV-I. All cryogenic fluids(LOX, $LN_2$) and compressed gases(Air, $GN_2$, GHe) were qualified by qualification management activity during AT(Autonmous Test), QT(Qualification Test) season for LP(Launch Pad) and LVAB(Launch Vehicle Assembly Building) and FT(Flight Test) season of KLSV-I. As the results, total 428 times of check analysis and 111 times of full analysis were performed.

Experimental Study for the Speed-up of a Super-speed Train Model in the Partial Vacuum Tunnel (아진공 터널에서 초고속 열차의 속도향상에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kim, Jae-Heung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2064-2071
    • /
    • 2011
  • We are developing an innovative super-speed land transportation system running in a partial vacuum in tunnels with small inside diameter to reduce the aerodynamic drag forces. This paper presents the experimental results obtained on a small scale model when a super-speed train model passing through a tunnel with small inside diameter and a partial vacuum to reduce the aerodynamic drag forces. The experiments were performed on a 1/52-scale moving model rig in which a train model with a diameter of 58 mm and a length of 603 mm was accelerated in a launching tube with 12.27 m length by means of the compressed air launcher and then passed through a tunnel model with 17.149 m length. The partial vacuum was maintained in the tunnel in order to reduce the energy consumption of the propulsion system of the super-speed tube train at super-speed of 700 km/h. In this study, the blockage ratio of train to tunnel model is 0.336. Experimental results show the nonlinear effects of the vacuum on the speed-up of the train model in the tunnel model under the partial vacuum up to 0.21 atm and at the velocity up to 684 km/h. This paper is first study for experiments on the speed-up of a super-speed train model in the partial vacuum tunnels.

  • PDF