• Title/Summary/Keyword: Compressed Air Energy

Search Result 102, Processing Time 0.023 seconds

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

An Experimental Study on the Energy Separation in the Ratio of Nozzle Area of a tow Pressure Vortex Tube (저압용 보텍스튜브의 노즐면적비에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;최정원
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2004
  • The process of energy separation in a low pressure vortex tube with compressed air as a working medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of a vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube Analysis of the results enabled to find the optimum ratio of nozzle area and the optimum shape of an orifice. From this optimum geometric setup of a low pressure and big vortex tube the effectiveness of energy separation was better than a high pressure and small vortex tube.

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

An Energy Absorption Characteristic of Thin-Walled Structure Members by Crushing Load (충돌에 의한 차체 박육구조부재의 에너지 흡수특성에 관한 연구)

  • Yang, I.Y.;Sim, J.K.;Kim, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, the crushing tests of circular tubes under axial impact loading are conducted to investigate the energy absorption abilities. A cross head with 18kg launched by the compressed air collides against circular tubes. Circular tubes used for this experiment are Al and CFRP laminates, which have 8 ply with $15^{\circ}$ and $45^{\circ}$. The absorbed energy unit mass and volume of the CFRP specimen with $15^{\circ}$ are higher than those of aluminum specimen. CFRP specimen having small stacking angle have better energy absorption abilities than that of large stacking angle.

  • PDF

Development of air supply system(Turbo blower) for 80kW PEM fuel cell (80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발)

  • Lee, Hee-Sub;Kim, Chang-Ho;Lee, Yong-Bok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle ($CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구)

  • Song, Chan-Ho;Lee, Kong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF

A Study on the Selection Method of Parameters for Energy Saving in Pneumatic Cylinder Driving Apparatus (소비에너지 절약을 위한 공기압 실린더 구동장치의 파라미터 선정방법)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2012
  • Pneumatic actuators are clean, lightweight, and can be easily serviced, whereas low energy efficiency has been considered as a critical shortcoming compared with corresponding hydraulic and electrical actuators. This study describes a new design method of pneumatic cylinder driving apparatus by lowering a supply pressure. The simulation study demonstrates that the designed system with the proposed method can operate at the smaller energy consumption state compare to the designed system with the conventional method for the specified working conditions.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector (고압 천연 가스 인젝터의 분무 특성에 관한 연구)

  • THONGCHAI, SAKDA;KANG, YUJIN;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.