• Title/Summary/Keyword: Compress

Search Result 474, Processing Time 0.023 seconds

A Literature Study about Comparison of Eastern-Western Medicine on the Acne (여드름의 동(東)·서의학적(西醫學的) 문헌(文獻) 고찰(考察))

  • Joo, Hyun-A;Bae, Hyeon-Jin;Hwang, Chung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.2
    • /
    • pp.1-19
    • /
    • 2012
  • Objective : The purpose of this study is to investigate about comparison of Eastern-Western medicine on the acne. Methods : We searched Eastern and Western medicine books for acne. We analyzed these books and examined category, definition, etiology, classification, internal and external methods of treatment of acne. Results : The results were as follows. 1. In Eastern medicine, Acne belongs to the category of the Bunja(粉刺), Jwachang(痤瘡), Pyepungbunja(肺風粉刺). In Western medicine, the other name of Acne is acne vulgaris. 2. In Eastern medicine, the definition of Acne includes manual extraction of comedones and skin appearance. In Western medicine, Acne is a common skin disease during adolescence and a chronic inflammatory disease of pilosebaceous unit of self localization. It is characterized by noninflammatory, open or closed comedones and by inflammatory papules, pustules, and nodules and it affects the areas of skin with the densest population of sebaceous follicles, these areas include the face, neck, back, and the upper part of the chest. 3. In Eastern medicine, the cause and mechanism of Acne arose from the state of internal dampness-heat and spleen-stomach internal qi deficiency due to dietary irregularities and then invaded external pathogen such as wind-dampness-heat-cold-fire in lung meridian lead to qi and blood heat depression stagnation. So it appears in skin. In Western medicine, the etiology and pathogenesis of Acne is clearly not identified, but there are most significant pathogenic factors of blood heat depression stagnation. So it appears in skin. In Western medicine, the etiology and pathogenesis of Acne is clearly not identified, but there are most significant pathogenic factors of Acne; Androgen-stimulated production of sebum, hyperkeratinization and obstruction of sebaceous follicles, proliferation of Propionibacterium acnes and inflammation, abnormaility of skin barrier function, genetic aspects, environmental factors etc. 4. In Eastern medicine, differentiation of syndromes classifies clinical aspects, and cause and mechanism of disease; the former is papular, pustular, cystic, nodular, atrophic, comprehensive type; the latter is lung blood heat, intestine-stomach dampness-heat, phlegm-stasis depression, thoroughfare-conception disharmony, heat toxin type. In Western medicine, it divides into an etiology and invasion period, and clinical aspects; Acne neonatorum, Acne infantum, Acne in puberty and adulthood, Acne venenata; Acne vulgaris, Acne conglobata, Acne fulminans, Acne keloidalis. 5. In Eastern medicine, Internal methods of treatment of Acne are divided into five treatments; general treatments, the treatments of single-medicine and experiential description, the treatments depending on the cause and mechanism of disease, and clinical differentiation of syndromes, dietary treatments. In Western medicine, it is a basic principles that regulation on production of sebum, correction on hyperkeratinization of sebaceous follicles, decrease of Propionibacterium acnes colony and control of inflammation reaction. Internal methods of treatment of Acne are antibiotics, retinoids, hormone preparations etc. 6. In Eastern medicine, external methods of treatment of Acne are wet compress method, paste preparation method, powder preparation method, pill preparation method, acupuncture and moxibustion therapy, ear acupuncture therapy, prevention and notice, and so on. In Western medicine, external method of treatments of Acne are divided into topical therapy and other surgical therapies. Topical therapy is used such as antibiotics, sebum regulators, topical vitamin A medicines etc and other surgical therapies are used such as surgical treatments, intralesional injection of corticosteroids, skin dermabrasion, phototherapy, photodynamic therapy, and so on. Conclusions : Until now, there is no perfect, effective single treatment. We think that Eastern medicine approach and treatment can be helpful to overcome the limitations of acne cure.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

A Study on the development of Creative Problem Solving Classes for University Students (창의적 문제해결형 대학 수업 개발 연구)

  • Hyun-Ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.531-538
    • /
    • 2023
  • Recently, many university classes have been changing from instructor-centered classes to learner-centered classes, and universities are trying to establish a new direction for university education, especially to foster talented people suitable for the Fourth Industrial Revolution. To this end, universities are presenting various competencies necessary for students and focusing on research on efficient education plans for each competency. Among them, creativity is considered the most important competency that students should obtain in universities. Developing a creative problem-solving-based subject where various majors gather to produce results while conducting creative team activities away from desk classes is considered a meaningful subject to cultivate capacities suitable for the requirements of the times. Therefore, this study purpose to develop creative problem-solving-based subjects and analyze the results of class progress. This creative problem-solving-based class is an Action Learning class for step-by-step idea development, which starts with a theoretical lecture for creative idea development and then consists of five stages of Action Learning. The tasks of action learning used in this class consisted of ceramic expression to increase the intimacy of the formed group and the group's collective expression, ideas in life to combine and compress individual ideas into one, environmental improvement programs around schools, and finally UCC on various topics. In the theoretical lecture conducted throughout the class, a class was conducted on Scientific Thinking for creative problem solving, and then a group-type action learning class was conducted sequentially. This Action Learnin process gradually increased the difficulty level and led to in-depth learning by increasing the level of difficulty step by step.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.