• Title/Summary/Keyword: Compound anchor

Search Result 6, Processing Time 0.021 seconds

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.

Shear Fracture Behavior of Anchor Systems for Shock Transmission Unit in RC Bridge (철근콘크리트 교량의 충격전달장치 앵커시스템의 전단파괴거동)

  • 김태상;송하원;변근주;안창모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1097-1102
    • /
    • 2001
  • Seismic safety of continuous span concrete bridge can be enhanced by distributing a large seismic lateral load to each supporting pier. A new viscoelastic device called Shock Transmission Unit(STU), which is a simple cylinder-piston assembly packed with a so-called silicone putty compound, enables the lateral seismic load to be transmitted to the pier by installation of the device to movable bearings of the bridge. The seismic safety of concrete bridges having the STU depends on not only safety of the bridges globally but also safety of anchor systems which anchors the STU to concrete pier. An experimental investigation is performed to study the behavior of cast-in-place anchor and post-installed anchor subjected to shear load statically and cyclically according to different edge distance, embedment length, and anchor spacing. Finally, the experimental results are compared with results by design methods of ACI and CCD, and results by FEM analysis.

  • PDF

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.

Effect of Al content on coating adhesion of hot rolled galvanized iron manufactured without pickling process (무산세 열연 용융아연도금강판의 도금밀착성에 미치는 도금욕 Al농도의 영향)

  • 전선호;최진원
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.31-42
    • /
    • 1999
  • The effect was investigated that aluminium in the zinc bath has on the coating adhesion of Hot-rolled Galvanized Iron(HGI) manufactured without pickling process. It is thought that the coating adhesion of HGI manufactured without pickling process is good due to the fact that increasing aluminium content in the zinc bath makes zinc and aluminium diffuse to the cracks or pores in the scale formed through the reduction heat treatment, and Fe-Zn-Al compound with good ductility is formed in the scale layer and plays a role of anchor between zinc coating and substrate. It is possible that HGI with the good coating adhesion was produced without pickling treatment in the zinc bath with more that 3wt% of Al content even at the $550^{\circ}C$ of conventional reduction heating temperature. In creasing the temperature of heating section and aluminium content in the zinc bath prevents the Zn-Fe alloy. The corrosion resistance of HGI manufactured without pickling process is excellent because of the mixed reaction of zinc sacrifice and aluminium passivity film.

  • PDF

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Bioassay of Allelopathy Substance Related Injury by Successive Cropping in Alfalfa(Medicago sativa L.) (알팔파 연작장해에 관여하는 타감작용 물질의 탐색 및 생물검정)

  • Jeon, In-Soo;Kim, Myung-Cho;Hur, Jang-Hyun;Yu, Chang-Yeon;Cho, Dong-Ha;Kim, E-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.228-235
    • /
    • 1997
  • This experiments were conducted to determine the effect of allelopathy and autotoxicity in alfalfa. Among several alfalfa cultivars, the substances exudated from seven cultivars including Medicago sativa, c.v. Luna, Sparta, Magnum, Husky, Milkmaker, Challenger and Anchor inhibited the germination and seedling growth of radish, ranging from 60 to 80%. When allelopathic substances were exudated from the soil of the alfalfa-cultivated field, the increased levels of substance retarded the germination rate and seedling growth of radish and alfalfa. The inhibition rate was about 80%, compared with that of control. Thus, this study indicates that the allelopathy and autotoxicity substances of alfalfa influenced the germination and seedling growth in alfalfa itself and radish. When allelopathic substances were analysed by using gas chromatograph, several kinds of phenol compounds were detected as follows; Salicylic acid, hydroxybenzoic acid, vanillic acid, syringic acid, coumaric acid, and ferulic acid.

  • PDF