• 제목/요약/키워드: Compound Material

검색결과 1,139건 처리시간 0.026초

P의 함량에 따른 Sn-Ag-Cu 및 Sn-Cu 무연솔더의 특성평가 (Characterization of the Sn-Ag-Cu and Sn-Cu Lead-free Solder by adding P)

  • 신영의;황성진
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.549-554
    • /
    • 2003
  • The purpose of this paper is to investigate the solder properties by the change of P mass percentage. Tension test, wetting balance test, spread test, and analysis of intermetallic compound after isothermal aging of Sn-2.5Ag-0.7Cu-0.005P, Sn-2.5Ag-0.7Cu-0.01P, Sn-2.5Ag-0.7Cu-0.02P, Sn-0.7Cu-0.005P were performed. Adding P in the solder alloys resulted in improvement of tensile strength, reduction of intermetallic compound growth, reduction of oxidization in fusible solders under wave soldering. After comparing solder alloy containing P with tin-lead eutectic solder alloy, P contained solders alloys showed much better solder properties than eutectic solder alloy. Furthermore, this solder alloy presented remarkable properties than any other lead-free solder alloy.

Diheteryl-substituted triphenylamine 화합물의 합성과 형광 특성 (Synthesis and Photoluminescent Property of Diheteryl-substituted Triphenylamine Compound)

  • 김병순;김성훈;손영아
    • 한국염색가공학회지
    • /
    • 제19권6호
    • /
    • pp.35-38
    • /
    • 2007
  • FTriphenylamine dye compound having diheteryl moiety was synthesized and its photoluminescent property was investigated. Organic luminescent materials have received great attentions due to potential application subjects onto full color image displays. In this context, the dye (III) for light emitting materials was synthesized using 2-(4-amino-2-hydroxyphenyl)benzoxazole (I) and 4,4'-diformyltriphenylamine (II). It is well known that the amino groups of compound (I) react with carbonyl groups, especially an aldehyde, to afford azomethine linkages. The dye shows bulish-green fluorescence property, which is anticipated for the light-emitting material for display devices. In this context, our aim is to synthesize diheteryl-substituted triphenylamine fluorescent dye as an emitting material. The spectroscopic characteristics and the fluorescent properties of this dye molecule were examined and determined.

공액사슬로 연결된 이핵금속착체의 전자적 상호작용에 관한 연구 (A Study on Electronic Interaction in Dimetallic Complexes with Conjugated Chain)

  • 정민철
    • 한국전기전자재료학회논문지
    • /
    • 제17권6호
    • /
    • pp.652-660
    • /
    • 2004
  • The cis-hex-3-ene-1,5-diynyl-bridged diiron compound 3, [(η$^{5}$ - $C_{5}$ M $e_{5}$ ) Fe(dppe)]$_2$($\mu$-C≡C-CH=CH-C≡C), have been prepared and characterized by cyclic voltammetry(CV), and electronic spectroscopy (UV-VIS and near-IR, NMR). From the results, compound 3 show two well resolved, single-electron, reversible oxidation waves by CV, and comproportionation constant(Kc) calculated from the CV data for compound 3. The Mixed-valence (MV) radical cation 3$^{+}$ show strong absorptions in the near IR, 1586 nm, and this band is more readily assigned as MV $\pi$-$\pi$ band of delocalized complex (Robin-Day Mixed-valence Class III), and the $H_{ab}$ , effective coupling parameter are most consistent with electronic delocalization.

$CuInSe_2$ 3원 화합물 박막의 전기적 구조적 특성 (Structural and Electrical Properties of $CuInSe_2$ Ternary Compound Thin Film)

  • 김영준;양현훈;박중윤;정운조;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.258-259
    • /
    • 2005
  • [ $CuInSe_2$ ] thin films were fabricated at various fabrication conditions (substrate temperature, sputtering pressure, BC/RF power, vapor deposition, heat treatment). And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInSe_2$ thin films with stoichiometric composition. $CuInSe_2$ thin film was well made at the heat treatment of 500[$^{\circ}C$] of SLG/Cu/In/Se stacked elemental layer which was prepared by sputter and thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $1.27\sim9.88\times10^{17}[cm^{-3}]$, $49.95\sim185[cm^2/V{\cdot}s]$ and $10^{-1}\sim10^{-2}[\Omega{\cdot}cm]$, respectively

  • PDF

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성 (Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets)

  • 안수호;정영근
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

Epoxy 절연물의 내크랙성 향상에 관한 연구 (Study on Crack Resistance Improvement of Epoxy Insulation)

  • 하영길;김수연;이상진;김영성;박완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

플라즈마 산질화처리 조건이 강의 내식성에 미치는 영향 (The Characteristics of Corrosion Resistance during Plasma Oxinitrocarburising for Carbon Steel)

  • 이구현;남기석;이상로;조효석;신평우;박율민
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.103-109
    • /
    • 2001
  • Plasma nitrocarburising and post oxidation were performed on SM45C steel using a plasma nitriding unit. Nitrocarburising was carried out with various methane gas compositions with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% oxygen gas atmosphere with 4 torr at different temperatures for various times. It was found that the compound layer produced by plasma nitrocarburising consisted of predominantly ${\varepsilon}-Fe_{2-3}(N,C)$ and a small proportion of ${\gamma}-Fe_4(N,C)$. With increasing methane content in the gas mixture, ${\varepsilon}$ phase compound layer was favoured. In addition, when the methane content was further increased, cementite was observed in the compound layer. The very thin oxide layer on top of the compound layer was obtained by post oxidation. The formation of Oxide phase was initially started from the magnetite($Fe_3O_4$) and with increasing oxidation time, the oxide phase was increased. With increasing oxidation temperature, oxide phase was increased. However the oxide layer was split from the compound layer at high temperature. Corrosion resistance was slightly influenced by oxidation times and temperatures.

  • PDF

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

Structure of an Organotitanoxane Containing a Tetrahedral $Ti_{4}O_{6}$ Cage, $C_{40}H_{60}O_{6}Ti_{4}$

  • Kim, Young-Sang;Ko, Jae-Jung;Kang, Sang-Ook;Kim, Tae-Jin;Han, Won-Sik;Suh, Il-Hwan
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.102-106
    • /
    • 2005
  • The crystal structure of the title compound has been analyzed by single crystal X-ray diffraction method. The compound crystallized in the triclinic space group $P\bar{1}$ with a=11.300(6) ${\AA}$, c=18.716(10) ${\AA}$, ${\alpha}=82.833(10)^{\circ}$, ${\beta}=83.042(11)^{\circ}$, ${\gamma}=66.139(10)^{\circ}$, $V=2162(2)\;{\AA}^{3}$, Z=2 and R1=0.661 for 10578 unique reflections. The four $C_{5}Me_{5}$ planar groups from a tetrahedron with a mean dihedral angle $70.92(9)^{\circ}$ among them and the $Ti_{4}O_{6}$ cage sits at the center of the tetrahedron. Each Ti atom in the $Ti_{4}O_{6}$ cage is bonded by three bridging oxygen atoms and coordinated by a $C_{5}Me_{5}$ ligand with a mean distance $2.067{\AA}$ from Ti atoms to the centroids of the four five-membered rings. Two oxygen atoms facing each other in $Ti_{4}O_{6}$ cage are $4.051(3){\AA}$ away in average.