• Title/Summary/Keyword: Compositional zoning

Search Result 21, Processing Time 0.026 seconds

Mineralogical Characteristics and Formation Processes of Zonal Textures in Hydrothermal Epidote from the Bobae Sericite Deposit (보배 견문모 광상에서 산출하는 녹염석의 누대구조의 특징과 발달과정)

  • 추창오
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.437-446
    • /
    • 2001
  • Zoned epidotes formed by the propylitic alteration of the Bobae sericite deposit in western Pusan show complex compositional zoning patterns, such as multiple growth zoning, oscillatory zoning, patchy zoning and irregular zoning. The complex zoned epidote, in general, shows AI-rich cores and Fe-rich rims. Pistacite component (Ps) in the epidote ranges from 18.5 to 74.3 mot.%. Remnant textures in multiple growth zoning indicate that the earlier zone was partially resorbed prior to growth of later one. Multiple growth zoning and oscillatory zoning suggest that hydrothermal system underwent rapid changes and fluctuations in fluid chemistry, redox condition, or temperature.

  • PDF

Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea (안동심성암체의 역누대 초성변화와 그 성인)

  • 황상구;이보현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.75-95
    • /
    • 2002
  • The Andong pluton in the Andong Batholith is composed of comagmatic plutonic rocks, in which the lithofacies comprise hornblende biotite tonalite in the central paft biotite granodiorite in the marginal paft and porphyritic biotite granite at the topside (noJthea~tern paft) of the pluton. The pluton is petrographically and petrochemically zoned, having more mafic center than margin and topside. Distribution pallern of the lithofacies represents a reverse zoning in the pluton. Modal and chemical data in the pluton show progressive and gradual compositional variations from the centrer via the margin to the topside. Quartz and K-teldspar increase toward the topside of the pluton, whereas hornblende, biotite and color index increase toward the center. The bulk composition in the pluton is also reversely zoned, with high $Si0_2$ and $K_{2}O$ in the topside facies, and high MnO, CaO, $Ti0_2$, $Fe_{2}O_{3}$t, MgO and $P_{2}O_{5}$ in the central facies. The reverse zoning is also evident in higher Cr. V, Ni, Sc and Sr of the more mafic tonalite in the interior. The reversely zoned pluton results from remobilization (resurgence) of the lower more mafic compositional zone into the upper more felsic zones of the pluton modified by thennogravitational diffusion and fractional crystallization. In the initial stages of evolution, the pluton was a petrochemical system that fonned chemical compositional zonation with mafic tonalitic magma in the lower. granodioritic one in the middle and granitic one in the upper paft of the magma chamber. Periodic influxes of more mafic magma from the ba~e resulted in mingling of liquids and redistribution of minerals, and may have triggered the remobilil.ation of the lower compositional zone into the upper more felsic zones.

Spatial Compositional Variations and their Origins in the Buseok Pluton, Yeongju Batholith (영주저반의 부석심성암체 내에서 공간적 조성변화와 그 성인)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.147-163
    • /
    • 2000
  • The Buseok pluton in the Yeongju Batholith is a comagmatic plutonic rocks which haveconcentrically compositional zoning. The lithofacies of the Buseok pluton comprise hornblende biotite tonalite in the southern part of the pluton, porphyritic and equigranular biotite granodiorite in the northern part and biotite granite in the north-central part. The compositional variations change gradually with continuity both within and between the lithofacies. The concentrically zoned pattern is relatively mafic rocks composed of high-temperature mineral assemblages in margin of the southern part, passing inward and northward gradually to more felsic rock in core of the north-central part. Changes in the textures and microstructures, as well as in the mineral content, take place between rock types of the plutons. Darker colored, generally coarse-grained, well foliated tonalite pass inward to light colored, coarse-grained, poorly foliated granodiorite, and finally give way to lighter colored, medium-grained, nearly nonfoliated granite. The foliation are best developed in the marginal part of the tonalite. Here, the regional myolitic foliation in the tonalite is steep northward and parallels to its southeastern contact with the country rock, but the magmatic foliation from disc-shaped mafic microgranitoid enclaves is subvertical and parallels the contacts with the country rock. As the tonalite approaches biotite granite in composition, the foliation is indistinct. Modal and chemical data for the pluton show quantitative compositional variation from the margin of the southern part to the core of the north-central part. Quartz and K-feldspar increase toward the core of the pluton, whereas hornblende, biotite and color index decrease. /Abundances of $SiO_2$and $K_2O$$_2$O increase toward the core according to the variation in quartz and K-feldspar, whereas those of MnO, CaO, $TiO_2$, $Fe_2O_3$, MgO and $P_2O_5$ decrease corresponding to the variation in mafic and accessaries. The compositional zonation resulted from fractional crystallization involving downward settling of earlier crystals, accompanied by upward movement of melt and volatiles, and followed by accessary marginal accretion of crystalline material in the magma to the marginal part. Although a little crustal contamination by the wall rock is recognized from the isotope data, the contamination is not only dominated over but also appropriate for forming the compositional variation in the pluton.

  • PDF

Petrologic Evolution of the Songaksan Monogenetic Volcano, Jeju Island, Korea (제주도 송악산 단성화산의 암석학적 진화)

  • 황상구;원종관;이문원;윤성효;이인우;김성규
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Songaksan volcano, which occurs as a monogenetic volcano on the southwestern promontory of Hallasan shield volcano, is composed of tuff ring, cinder cone, lava pond and cinder conelet complex on wide basalt plateau. Except for an influx of external quartz xenocrysts in the tuff ring. Totally the volcano ranges from trachyandesite to trachybasalt in petrography and chemical compositions, which confirm the continuum between the evolved and primitive compositions widely occurring in the Jeju volcanic system. Chemical data for the volcano show quantitative compositional variation from the lower to the upper part of the volcanic sequences. The continuous compositional variations generally define a compositionally zoned magma storage. The chemical data suggest that the compositiona1 donations might have resulted from the fractional crystallization of a parental alkali magma. As result, the Songaksan volcano initially tapped the lop of the zoned magma storage and subsequently erupted successively more primitive magma.

  • PDF

Geochemical Study on Pegmatites in Central Region of Taebaek Mineralized Area (태백산(太白山) 광화대(鑛化帶) 중부지역(中部地域) 페그마타이트에 대한 지화학적(地化學的) 연구(硏究))

  • Choi, Sung-Hoon;Chi, Jeong-Mahn
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 1990
  • This study has been carried out on the Pegmatites, Naedeogri Granites, Nonggeori Granites and Metasedimentary rocks in the middle area of Taebaeksan region to investigate the geochemical properties and possibility of productivity. Pegmatites are characterized by metamorphosed anatectic pegmatite and differentiated magmatic pegmatite, and are mixed type of rare-element pegmatite and mica-bearing pegmatite by the classification of Ginsburg(1979). The petrological type of the igneous rocks is thought to be calcalkali, subalkaline and peralumious. According to chemical variations against D. I., differentiation trends from Naedeogri and Nonggeori Granites through non-mineralized pegmatites to mineralized pegmatites are supposed. From the relationship between oxided and $SiO_2$, pegmatites and Nonggeori Granite have shown similar tendencies and bulk composition of pegmatites and similar to metasedimentary rocks near the intrusives. By judging the correlations of trace elements, it is elucidated that pegmatites adjacent to Naedeogri and Nonggeori Granites have been originated in magma differentiation from these granites and the others have been differentiated by remelting or partial melting from metasedimentary rocks. $Sp_5$, $Sp_8$, and $Sp_9$ pegmatites are considered as productive rocks, and $Sp_4$, $Sp_6$, $Sp_7$, $Sp_{10}$, $Sp_{11}$, and $Sp_{12}$ pegmatites and granites are supposed to have a weak productivity, in terms of element ratios related with Sn mineralizations. Tourmalines in productive pegmatites are formed under the circumstance of Li-poor granitoids and associated with pegmatites, and the others are seemed to be originated in metapelites and metapsammites which are not coexisting with an Al-saturating phase. Three types of chemical zoning are noticed in tourmalines: (1) apparently homogeneous compositional patterns, (2) a continuous core-to-rim zoning and, (3) a discontinuous core-to-rim zoning. From results of EPMA of tourmalines, Al, Mg and Ca increase closer to rim, while Fe decreases.

  • PDF

Field Evidence of Magma Mixing from Concentric Zoning and Mafic Microgranular Enclaves in Bunam Stock, Korea (청송 부남암주의 동심원상 누대와 포유체로부터 마그마 혼합작용의 야외증거)

  • Hwang, Sang Koo;Seo, Seung Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2016
  • The Bunam Stock ($29.5km^2$ area) is an outcrop of plutonic complex classified four facies: coarse-grained granite, quartz monzodiorite, granodiorite and fine-grained granite. Three facies except the last one exhibit very irregular boundaries with gradational compositional variations between both facies and show concentric zoning from the central quartz monzodiorite through granodiorite to outer coarse-grained granite. Mafic microgranular enclaves (MME) commonly occur in granodiorite. Some MMEs, have very fine-grained chilled margins and indentedly crenulate contacts, and display horizontally circular and vertically elongate shapes. Their shape and granularity indicate coeval flow and mingling of partly crystalline felsic and mafic magmas. MMEs exhibit dark fine-grained margins giving them a ellipsoidal form that has been attributed to undercooling of a mafic magma as blobs intruded into a felsic magma. The observed relations in the Bunam Stock identify that two endmembers are coarse-grained granite from a felsic magma and quartz monzodiorite from a mafic magma, and hybrid is granodiorite including MMEs. So they exhibit concentric zoning that lays the center on the mafic endmember due to magma mixing at the contacts of two magmas, when mafic magma injected into felsic magma. Thus the quartz monzodiorite may probably represent an ancient conduit of mafic magma transport through a granitic magma chamber. Mafic magma would rise through the conduit in which favorable conditions for magma mixing occurred. All these features suggest that they formed from mixing processes of calc-alkaline magma in the Bunam Stock.

Skarn-Ore Associations and Phase Equilibria in the Yeonhwa-Keodo Mines, Korea (태백산광화대(太白山鑛化帶) 연화(蓮花)-거도광산(巨道鑛山)에 있어서의 스카른과 광석광물(鑛石鑛物)의 수반관계(隨伴關係) 및 상평형(相平衡))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • The Yeonhwa (I, II) and Keodo mines, neighboring in the middle part of the Taebaegsan mineral belt, contain three distinct classes of skarn deposits: the zinc-lead skarn at Yeonhwa (I, II), the iron skarn at Keodo south (Jangsan orebodies), and the copper skarn at Keodo north (78 orebodies). The present study characterizes the three classes of skarn deposits mainly in terms of skarn/ore associations examined from chemical compositional point of view, and applies existing quantitative phase diagrams to some pertinent mineral assemblages in these mines. At Yeonhwa I the Wolam I orebody shows a vertical variation in skarn minerals ranging from clinopyroxene/garnet zone on the lower levels through clinopyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite veins on the upper levels and surface. Ore minerals, sphalerite and galena, associate most closely with the intermediate clinopyroxene zone. At Keodo, the Jangsan iron skarn hosted in quartz monzodiolite as a typical endoskarn, shows a skarn zoning, from center of orebody to outer side, magnetite zone, magnetite/garnet zone, garnet clinopyroxene zone, and clinopyroxene/epidote/plagioclase zone. The 78 copper skarn in the Hwajeol limestone indicates a zoning, from quartz porphyry side toward limestone side, orthoclase/epidote zone, epidote/clinopyroxene zone, and clinopyroxene/garnet zone; chalcopyrite and other copper sulfides tend to be in clinopyroxene/garnet zone. Mioroprobe analyses of clinopyroxenes and garnets from the various skarn zones mentioned above revealed that the Yeonhwa zinc/lead skarns are characterized by johansenitic clinopyroxene (Hd 25-78, Jo 15-23) and manganoan andraditic garnet (Ad 13-97, Sp 1-24), whereas the Jangsan iron skarn at Keodo by Mn-poor diopsidic clinopyroxene (Di 78-93, Jo 0.2-1.0) and Mn-poor grossularitic grandite (Gr 65-77, Sp 0.5-1.0). The 78 copper skarn at Keodo is characterized by Mn-poor diopsidic-salite (Di 66-91, Jo 0.2-1.1) and Mn-poor andraditic grandite(Ad 40-74, Sp 0.5-1.1). The compositional charateristics of iron, copper, and zinc-lead skarns in the Yeonhwa-Keodo mines are in good correlations with those of the foreign counterparts. Compiling a $T-XCO_2$ phase diagram for the Jangsan endoskarns, a potential upper limit of temperature of the main stage of skarn formation is estimated to be about $530^{\circ}C$, and a lower limit to be $400^{\circ}C$ or below assuming $XCO_2=0.05$ at P total=1kb. Applying a published log $fS_2$-log $fo_2$ diagram to the Keodo 78 and Yeonhwa exoskarns, it is revealed that copper sulfides and zinc-lead sulfides do not co-exist stably below log $fS_2=-4$ and log $fO_2=-23$ at $T=400^{\circ}C$ and ${\times}CO=1$ atm.

  • PDF

A Mineralogical Study of the Skarn Minerals from the Shinyemi Lead-Zinc Ore Deposits, Korea (신예미(新禮美) 연(鉛)-아연광상산(亞鉛鑛床産) 스카른광물(鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Kim, Kyu Han;Nakai, Nobuyuki;Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.14 no.4
    • /
    • pp.167-182
    • /
    • 1981
  • Skarn silicates from the Shinyemi lead-zinc ore deposits can be distinguished as following three mineral assemblages: 1) garnet-pyroxene-phlogopite-wollastonite assemblages, 2) garnet-pyroxene assemblages, 3) garnet-epidote assemblages The assemblages are considered to be related with occurrences and kindes of ore minerals, and stage of mineralization in the deposits. Microprobe analyses of some garnets from the deposits show strong chemical zoning which is due to the changing equilibrium condition during growth of garnet crystal. Depositional condition of ore deposits and place of the ore-related igneous rock are discussed in the light of chemical composition of garnet and occurence of skarns in the Shinyemi.

  • PDF

Chemical Characterization of Oscillatory Zoned Tourmaline from Diaspore Nodule, an Aluminum-rich Clay Deposit, Milyang, South Korea (밀양 고알루미나 점토광상 다이아스포아 단괴내의 진동누대 전기석의 화학적 특징)

  • Choo, Chang-Oh;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.227-236
    • /
    • 2005
  • Hydrothermal tourmaline occurs as aggregates or dissemination in the diaspore nodule from an aluminum-rich clay deposit, Milyang, southeastern Korea. Most crystals of tourmaline show complex textures that are finely zoned. The fine-scale chemical zonation of hydrothermal tourmaline reflects the fluctuation conditions that would be expected from fluid mixing in open systems. Oscillatory chemical zoning in tourmaline formed and showed similar patterns, regardless of its crystallographic directions. Mg was enriched in the early stage of crystal growth while Fe was enriched in the later stage, with fluctuations of the ratio of Fe to Mg. Chemical analysis, BSE images, and X-ray compositional maps confirm that the oscillatory Boning in tourmaline is exclusively controlled by the variations of Fe and Mg contents, but the contribution of boron to the zonation is insignificant. The fact that tourmaline altered to diaspore and dickite indicates that tourmaline was unstable with respect to these aluminous minerals as the B, Fe, and Mg activities decreased. Therefore, the aluminum activity may control the stability of tourmaline in the hydrothermal system.

The Wondong magmatic system : its petrochemical evolution (원동 마그마계 : 암석화학적 진화)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.166-184
    • /
    • 1997
  • The Wondong caldea is a deeply eroded structure that offers spectacular exposures through the core and margins of a resurgent caldera. The Wondong Tuff and the postcollapse intrusions range from medium-silica rhyolite to rhyodacite in composition and the postcollapse lava and tuff, preresurgent and resurgent intrusions also range from medium-silica rhyolite to an-desite, which jump to gap dacite composition. The continuous compositional zonations generally define a large stratified magma system in the postcollapse and resurgent magma chamber. Isotopic and trace element evidence suggest that the compositional zonations might have resulted from the differentiations from crystal fractionations of a parental andesitic magma, accompanying a little contamination from the crustal assimilations near the chamber roof and wall. But chemically and isotopically distinct late intusions might have resulted from emplacement of any different magma batch.

  • PDF