• Title/Summary/Keyword: Composites Material

Search Result 2,192, Processing Time 0.024 seconds

Nanocomposite reinforced structures to deal with injury in physical sports

  • Guojiao Wang;Kun Peng;Hui Zhou;Guangyao Liu;Zhiguo Lou;Feng Pan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.541-555
    • /
    • 2023
  • The extensive use of polymeric matrix composites in the athletic sector may be attributed to its high strength-to-weight ratio, production economy, and a longer lifespan than conventional materials. This study explored the impact of carbon nanotubes on the properties of different composite field sports equipment components. The test specimens were fabricated using the compression molding technique. The insertion of carbon nanotubes increases mechanical properties related to the process parameters to account for an improvement in the stick sections' overall performance. The dynamic response of functionally graded reinforced nanocomposite wire structure is examined in this paper on the bases of high-order hyperbolic beam theory lined to the size-dependent nonclassical nonlocal theory under the external mechanical load due to the physical activities. Finally, the impact of different parameters on the stability of nanocomposite structures is discussed in detail.

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

Effect of Cross-Linking Characteristic on the Physical Properties and Storage Stability of Acrylic Rubber

  • Seong-Guk Bae;Min-Jun Gim;Woong Kim;Min-Keun Oh;Ju-Ho Yun;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.136-141
    • /
    • 2023
  • Polyacrylic rubber (ACM) is well known for its excellent heat resistance and chemical stability. Additionally, its performance can be readily manipulated by modifying its functional groups, rendering it highly attractive to various industries. However, extreme climate changes have necessitated an expansion of the operating temperature range and lifespan of ACM products. This requires the optimization of both the compounding process and functional-group design. Hence, we investigated the relationship between the cross-linking system and mechanical properties of an ACM with a carboxylic cure site. The crosslink density is determined by chemical kinetics according to the structure of additives, such as diamine crosslinkers and guanidine accelerators. This interaction enables the manipulation of the scotch time and mechanical properties of the compound. This fundamental study on the correlation analysis between cross-linking systems, physical properties, and storage stability can provide a foundation for material research aimed at satisfying the increasingly demanding service conditions of rubber products.

Effect of Silica Nanoparticles on Tear Strength of CR Compounds: A Comparison Study between the ASTM D470 and DIN VDE 0472-613

  • Changsin Park;Byeong-Rea Son;Gi-Bbeum Lee;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.34-41
    • /
    • 2024
  • In this study, the effects of the type and content of silica on the mechanical and tear properties of chloroprene rubber (CR), which is mainly used as a jacket material for mining cables, were studied. The crosslinking density (ΔM) and reinforcing factor (αf) defined using cure characteristics increased with increasing silica content, whereas the cure rate decreased. The hardness, tensile strength, and modulus of the CR compounds increased depending on the silica content and structural development. The reinforcing behavior of the silica-filled CR compounds according to the silica type and content showed the best fit with the Thomas equation of the predictive model. Tear strength was evaluated using two standard test methods, ASTM D470 and DIN VDE 0472-613, and the results were compared. The tear strength increased as the silica content increased, regardless of the test method, and the different tear strengths obtained by the two standard test methods showed a linear relationship with each other, indicating a high correlation.

Structural Analysis of Wind Turbine Blades Considering the Bi-modulus Property of Carbon Fiber Composites (탄소섬유 복합재의 Bi-modulus 특성을 반영한 풍력 터빈 블레이드 구조해석)

  • Geunsu Joo;Jin Bum Moon;Si-Hyun Kim;Min-Gyu Kang;Ji-Hoon Kim
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • This paper deals with the structural analysis of wind turbine blades considering the bi-modulus property of CFRP, known as a more economic and efficient material for very large blades. The bi-modulus property is an unique characteristic of CFRP that shows higher tensile modulus than compressive modulus. Due to this characteristic, it is needed to apply the bi-modulus property to the computational analysis of CFRP blades to achieve more accurate results. In this paper, a novel method is proposed to apply the bi-modulus property of CFRP in a numerical simulation. To demonstrate the bi-modulus effect in FE analysis, the actual bi-modulus of CFRP was measured and applied to the structural analysis of a wind turbine blade. Moreover, the effects of the proposed method were evaluated by comparing the analysis results with actual full-scale blade static test results. As a result, it was verified that the proposed method could appropriately simulate the bi-modulus during FE analysis. Moreover, the accuracy of blade structural analysis was improved in accordance with the application of the bi-modulus property.

Can discolored dental composites be bleached in depth?

  • Luca Giachetti;Daniele Scaminaci Russo;Michele Nieri;Francesca Cinelli
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.3
    • /
    • pp.23.1-23.10
    • /
    • 2024
  • Objectives: Previous in vitro studies determined the whitening effects of bleaching products on stained resin composite surfaces. This in vitro study aimed to verify the effectiveness of a whitening system on composite resin previously subjected to pigmentation, specifically examining the depth of whitening effectiveness within the material structure. Materials and Methods: A commercially available nano-filled composite resin was used. Specimens were stained using a coffee-based solution and a 10% carbamide peroxide-based gel was employed as the whitening agent. The pigment's penetration and the effect of the bleaching gel were evaluated by measuring color (CieLab values) from the outer edge to the inner part of the specimens. Color measurements were taken at 14 points, starting from 0.1 mm from the external perimeter up to 3.0 mm. Results: Analysis of variance tests showed a statistically significant difference between the Control Group (CG), Pigmentation Group, and Whitening Group. The whitening agent was effective up to 1.5 mm in depth, with Whiteness index (W) values not statistically different from those of CG up to 0.5 mm in depth. Conclusions: Whitening agents on nano-filled resin composite previously pigmented appear effective in restoring the W to values similar to the original, particularly in the superficial layers of the sample.

Comprehensive Review on Post-polymerization Modification of Hydroxyl-Terminated Polybutadiene (HTPB)

  • Sungyoung Yoon;Seulah Lee;Jongbok Lee
    • Elastomers and Composites
    • /
    • v.59 no.3
    • /
    • pp.108-120
    • /
    • 2024
  • Due to its unique physical, mechanical, and chemical properties, hydroxyl-terminated polybutadiene (HTPB) is an essential telechelic polymer that is used and applicable in areas ranging from automotive to aerospace and coatings industries. It is a key precursor in polyurethane chemistry and is celebrated for its versatility and ability to undergo various post-polymerization modifications to meet specific industrial needs. This review focuses on the sophisticated methodologies employed to enhance the stability and functionality of HTPB through targeted chemical modifications. Representative techniques include hydrogenation, which suppresses the oxidation susceptibility of polymers by saturating weak double bonds, and epoxidation, which introduces epoxy groups that increase the reactivity and compatibility with polar additives. These modifications not only preserve the inherent attributes of HTPB, they also amplify their utility across a spectrum of applications, from aerospace to automotive industries, where enhanced material performance is critical. This study outlines the challenges in modifying HTPB, discusses the chemical strategies employed, and showcases the improved performance characteristics of the resulting polymers, thus providing a comprehensive overview of the current advancements and future potential of HTPB utilization.

Cobalt Vanadium Heterointerface Modulated Co2P/VP Heterostructure Electrocatalyst for Robust Water Splitting

  • Purna Prasad Dhakal;Ganesh Bhandari;Hoang Tuan Nguyen;Duy Thanh Tran;Nam Hoon Kim;Joong Hee Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.296-300
    • /
    • 2024
  • The rational synthesis of efficient transitional metal phosphides (TMPs) could revolutionize green hydrogen production via water splitting. Hydrogen, with the highest energy density among fuels, stands out as an excellent alternative to address environmental issues and ensure sustainable future energy generation. However, the limited availability of state-of-the-art electrocatalysts like Pt/C and RuO2, used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, necessitates the development of cost-effective and non-noble electrocatalysts for green hydrogen production. In this context, we present a novel heterointerface-modulated heterostructure design comprising ultrathin nanosheets of a 3D Co2P/VP heterostructure on a conductive nickel foam substrate. This heterostructure demonstrates remarkably low overpotentials of 96 mV for HER and 237 mV for OER at 10 mA cm-2. The material's robust electrochemical kinetics are further evidenced by low Tafel slopes of 68.28 mV dec-1 and 116.54 mV dec-1, respectively.

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.