• Title/Summary/Keyword: Composite-PZT hybrid structure

Search Result 2, Processing Time 0.017 seconds

Dynamic Characteristics and Power Generation Performance Evaluation of Customized Energy Block Structures (시설물 맞춤형 에너지 블록 구조의 동적 특성 및 발전 성능 평가)

  • Noh, Myung-Hyun;Kim, Hyo-Jin;Parl, Ji-Young;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.197-206
    • /
    • 2016
  • This study carried out structural behaviors and power generation performances of customized energy harvesting block structures, especially for infrastructures such as parking facility. The improved energy block structures described in this study were represented by using numerical and experimental models. In particular, the composite-PZT hybrid energy blocks are tentatively proposed for better structural durability and power generation effects. The finite element model using ABAQUS program is used for studying static and dynamic characteristics of block structures made of composite materials. In addition, we evaluated the various power generation capacities of advanced energy block structures through laboratory-scale and field experiments.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.