• 제목/요약/키워드: Composite use

검색결과 1,898건 처리시간 0.116초

Practical and efficient approaches for semi-rigid design of composite frames

  • Gil, Beatriz;Bayo, Eduardo
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.161-184
    • /
    • 2007
  • The use of composite semi-rigid connections is not fully exploited, in spite of its great number of advantages. Composite semi-rigid connections may lead to an optimal moment distribution that will render lighter structures. Furthermore, using the appropriate semi-rigid connection design, the stability of the frames against lateral loads may entirely rely on the joint stiffness, thus avoiding bracing systems and permitting more diaphanous designs. Although modern codes, such as the Eurocode 4 (EC4), propose thorough methods of analysis they do not provide enough insight and simplicity from the design point of view. The purpose of this paper is to introduce practical and efficient methods of analysis that will facilitate the work of a structural analyst starting from the global analysis of the composite frame and ending on the final connection design. A key aspect is the definition of the stiffness and strength of the connections that will lead to an optimal moment distribution in the composite beams. Two examples are presented in order to clarify the application of the proposed methods and to demonstrate the advantages of the semi-rigid composite design with respect to the alternative pinned and rigid ones. The final aim of the paper is to stimulate and encourage the designer on the use of composite semi-rigid structures.

Morphing of Composite Plate Using SMA Actuator (형상기억합금 작동기를 이용한 복합재 평판의 형상변형)

  • 김상헌;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.

A Study on the Vibration Characteristics of Symmetry, Asymmetry Laminated Composite Materials by using Time-Average ESPI (시간평균 ESPI를 이용한 대칭.비대칭 적층 복합재료의 진동 특성 비교에 관한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Kang Shin-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.259-260
    • /
    • 2006
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique. In this study, ESPI is proposed for the purpose of vibration analysis for new material, composite material. Composite materials have various complicated characteristics according to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. If use Time-Average ESPI, can analyze vibration characteristic of composite material by real time easily. This study manufactured laminated composite of symmetry, asymmetry two kinds that is consisted of CFRP(Carbon Fiber Reinforced Plastics) and shape of test piece is rectangular form.

  • PDF

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application (인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성)

  • 송영석;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

Morphing of Composite Beam actuated by SMA Actuator (형상기억합금 작동기로 작동되는 복합재 보의 형상변형)

  • Kim Sanghaun;Cho Maenghyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2004
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory effect concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite beam are considered as simple morphing structural components which are based on large deformable 2D composite beam theory. Numerical results of fully coupled SMA-composite structures are presented.

  • PDF

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

FRACTURE STRENGTH OF COMPOSITE RESIN WITH VARIOUS FIBER REINFORCING MATERIALS (수종의 섬유보강재가 복합레진의 파절강도에 미치는 영향)

  • Park, Ji-Man;Cho, Yong-Bum;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.371-380
    • /
    • 2000
  • The effect of fiber reinforcing materials on the fracture strength of composite resin was evaluated. Each ten composite resin bars reinforced by glassfiber[Fiber-Splint ML$^{(R)}$(Polydentia SA, Switzerland)], polyethylene fiber [Ribbond$^{(R)}$(Ribbond Inc., U.S.A.)] and polyaramid fiber[Kevlar$^{(R)}$(DuPont, U.S.A.)] were loaded under the 3-point compression technique. Another ten pure composite resin bars without reinforcement were used as a control group. Then mean fracture strength and standard deviation were calculated and a ANOVA and Scheffe test were used in statistics. The results were as follows: 1. Kevlar group showed the highest fracture strength as 175.5MPa (p<0.05). Fiber-Splint ML group showed the lowest fracture strength as 112.7MPa. 2. The mean value of fracture strength in Ribbond group was 136.4MPa, and that of unterated control group was 143.6MPa. No difference was found between the two groups. 3. Ribbond and Kevlar reinforcement groups showed a catastrophic failure, where complete separation of pieces occurs to a unseparated fracture pattern. The use of Kevlar reinforcement fibers with composite resin showed significant increase in the average load failure and the presence of the fibers did prevent the catastrophic crack propagation present in the unreinforced samples. The use of Ribbond reinforcement fibers with composite resin showed no significant increase in the average load failure. However, the presence of the fibers did prevent the catastrophic crack propagation. Because high strength of glassfiber are rapidly degraded on exposure to moisture and humidity. The use of Fiber-Splint ML reinforcement fibers with composite resin showed significant decrease in the average load failure and displayed catastrophic fractures.

  • PDF