• Title/Summary/Keyword: Composite tube

Search Result 621, Processing Time 0.018 seconds

Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Moon, Tae-Sup;Stiemer, S.F.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.17-34
    • /
    • 2005
  • This paper presents an experimental study and its findings of the behavior of circular and square stub columns filled with high strength concrete ($f_c^{\prime}$=49MPa) and polymer cement concrete (PCC) under concentric compressive load. Twenty-four specimens were tested to investigate the effects of variations in the tube shape (circular, square), wall thickness, and concrete type on the axial strength of stub columns. The characteristics of CFT stub columns filled with two types of concrete were investigated in order to collect the basic design data for using the PCC for the CFT columns. The experimental investigations included consideration of the effects of the concrete fill on the failure mode, ultimate strength, initial stiffness and deformation capacity. One of the key findings of this study was that circular section members filled with PCC retain their structural resistance without reduction far beyond the ultimate capacity. The results presented in this paper will provide experimental data to aid in the development of design procedures for the use of advanced concretes in CFT columns. Additionally, these results give structural designers invaluable insight into the realistic behavior of CFT columns.

Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.921-947
    • /
    • 2016
  • Concrete Filled Fibre Reinforced Polymer Tube (CFFT) for new columns construction has attracted significant research attention in recent years. The CFFT acts as a formwork for new columns and a barrier to corrosion accelerating agents. It significantly increases both the strength capacity (Strength enhancement ratio) and the ductility (Strain enhancement ratio) of reinforced concrete columns. In this study, based on predefined selection criteria, experimental investigation results of 134 circular CFFT columns under axial compression have been compiled and analysed from 599 CFFT specimens available in the literature. It has been observed that actual confinement ratio (expressed as a function of material properties of fibres, diameter of CFFT and compressive strength of concrete) has significant influence on the strength and ductility of circular CFFT columns. Design oriented models have been proposed to compute the strength and strain enhancement ratios of circular CFFT columns. The proposed strength and strain enhancement ratio models have significantly reduced Average Absolute Error (AAE), Mean Square Error (MSE), Relative Standard Error of Estimate (RSEE) and Standard Deviation (SD) as compared to other available strength and strain enhancement ratios of circular CFFT column models. The predictions of the proposed strength and strain enhancement ratio models match well with the experimental strength and strain enhancement ratios investigation results in the compiled database.

THERMAL SHOCK FRACTURE OF SILICON CARBIDE AND ITS APPLICATION TO LWR FUEL CLADDING PERFORMANCE DURING REFLOOD

  • Lee, Youho;Mckrell, Thomas J.;Kazimi, Mujid S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.811-820
    • /
    • 2013
  • SiC has been under investigation as a potential cladding for LWR fuel, due to its high melting point and drastically reduced chemical reactivity with liquid water, and steam at high temperatures. As SiC is a brittle material its behavior during the reflood phase of a Loss of Coolant Accident (LOCA) is another important aspect of SiC that must be examined as part of the feasibility assessment for its application to LWR fuel rods. In this study, an experimental assessment of thermal shock performance of a monolithic alpha phase SiC tube was conducted by quenching the material from high temperature (up to $1200^{\circ}C$) into room temperature water. Post-quenching assessment was carried out by a Scanning Electron Microscopy (SEM) image analysis to characterize fractures in the material. This paper assesses the effects of pre-existing pores on SiC cladding brittle fracture and crack development/propagation during the reflood phase. Proper extension of these guidelines to an SiC/SiC ceramic matrix composite (CMC) cladding design is discussed.

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

Behavior of Internally Confined Hollow RC Columns (내부 구속 중공 RC 기둥의 거동 특성)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.649-660
    • /
    • 2009
  • A nonlinear column model of an internally confined hollow (ICH) reinforced concrete (RC) column was suggested and a parametric study was performed. The suggested column model considered the confining effect and the material nonlinearity of concrete. To verify the suggested column model, its analysis results were compared with the test results from previous researchers and a quasi static test performed in this study. They showed that the suggested column model was reasonable and had acceptable accuracy. The results from parametric studies showed that the thickness of the internal tube, concrete strength, and the hollow ratio of the ICH RC column affected its behavior.

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.

Buckling failure of 310 stainless steel tubes with different diameter-to-thickness ratios under cyclic bending

  • Chang, Kao-Hua;Lee, Kuo-Long;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.245-260
    • /
    • 2010
  • In this paper, experimental and theoretical investigations on the response and collapse of 310 stainless steel tubes with different diameter-to-thickness ratios subjected to cyclic bending are discussed. The tube-bending device and curvature-ovalization measurement apparatus were used to conduct the experiment. The endochronic theory combined with the principle of virtual work and finite element software, ANSYS, were used to simulate the moment-curvature and ovalization-curvature relationships. It is shown that although the two methods lead to good simulation of the moment-curvature relationship, the endochronic theory combined with the principle of virtual work has the better simulation of the ovalization-curvature response when compared with experimental data and the simulation by ANSYS. In addition, the theoretical formulations proposed by Kyriakides and Shaw (1987) and Lee et al. (2001) were used to simulate the controlled curvature-number of cycles to produce buckling relationship. It is shown that the theoretical formulations effectively simulate the experimental data.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.