• Title/Summary/Keyword: Composite tube

Search Result 621, Processing Time 0.026 seconds

Experimental and Analytical studies on Failure Behavior of Stud Shear Connectors in CFT Structures (CFT 구조에 적용된 스터드 전단연결재의 파괴 거동에 대한 실험 및 해석적 연구)

  • Lee, Sangyoon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.400-412
    • /
    • 2013
  • For the composite behavior of steel tube and inner concrete, the shear connectors should be applied to the CFT structures. However, the present design codes don't provide the design criteria that can be applied on shear connectors in the CFT structures typically filled with plain concrete. This study has been carried out to propose design criteria (shear strength and resistance factor) for the stud shear connectors in CFT structures. Experimental tests using the push-out specimens with the plain concrete blocks and finite element analysis were conducted for the purpose of verifying the main failure mode to propose the shear strength of studs in CFT structures. From the results of this study, the main failure mode of studs in CFT structures is splitting crack of concrete and this failure mode reduces shear strength of studs in CFT structures relatively to those embedded in RC blocks.

Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites (그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Park, Gyu-Dae;Choi, Sung-Kyu;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.389-394
    • /
    • 2015
  • The sound absorption coefficient and sound transmission loss of graphite intercalation compound (GIC) included epoxy composites were investigated. Epoxy resin was infused into the expanded GIC and the impedance tube method was employed to measure the sound absorption coefficient and sound transmission loss. Scanning electron microscopy photographs showed uniform distribution of the GIC in the epoxy matrix. The surface density of epoxy/GIC (20 wt%) composites decreased about 56% compared to that of pure epoxy. The sound absorption coefficient of composites increased about 3 times at the frequency range of 500~1000 Hz compared to the pure epoxy. The sound transmission loss of composites decreased with increasing the GIC content and it is attributed to the increase of pores in the composites.

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

Axial compressive behavior of special-shaped concrete filled tube mega column coupled with multiple cavities

  • Wu, Haipeng;Qiao, Qiyun;Cao, Wanlin;Dong, Hongying;Zhang, Jianwei
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.633-646
    • /
    • 2017
  • The compressive behavior of special-shaped concrete filled tube (CFT) mega column coupled with multiple cavities is studied by testing six columns subjected to cyclically uniaxial compressive load. The six columns include three pentagonal specimens and three hexagonal specimens. The influence of cavity construction, arrangement of reinforcement, concrete strength on failure feature, bearing capacity, stiffness, and residual deformation is examined. Experimental results show that cavity construction and reinforcements make it possible to form a combined confinement effect to in-filled concrete, and the two groups of special-shaped CFT columns show good elastic-plastic compressive behavior. As there is no axial bearing capacity calculation method currently available in any Code of practice for special-shaped CFT columns, values predicted by normal CFT column formulas in GB50936, CECS254, ACI-318, EC4, AISCI-LRFD, CECS159, and AIJ are compared with tested values. The calculated values are lower than the tested values for most columns, thus the predicted bearing capacity is safe. A reasonable calculation method by dividing concrete into active and inactive confined regions is proposed. And high accuracy shows in estimating special-shaped CFT columns either coupled with multiple cavities or not. In addition, a finite element method (FEM) analysis is conducted and the simulated results match the test well.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.