• Title/Summary/Keyword: Composite steel bridge

Search Result 478, Processing Time 0.023 seconds

Evaluation of Seismic Force Effects on Skew Bridges (사교에 작용하는 지진하중의 영향 평가)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.113-119
    • /
    • 1998
  • This study is focused on evaluation of the structural behavior of skewed bridge during earthquake. The variation of natural frequencies and the lateral forces at pier shoes by the skewness and the rotational effect about vertical axis of skewed bridge due to seismic activity are analytically evaluated and identified through case studies. For this purpose, the composite steel girder highway bridges are selected as case study models. The seismic analyses by response spectrum method and time history method are performed for the selected models. It has been recognized that the frequency of longitudinal model increased as the skew angle decreased, while the lateral mode frequency showed the opposite trends. When the skew angle decreased, longitudina seismic forces of the bridge at the pier were increased but decreased in transverse direction. And it also has been found that the skewed bridges of the case study models showed the rotational behavior about vertical axis due to motion of San Fernando earthquake at Pacoima Dam.

  • PDF

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

Flexural Performance of Multistage Prestressed and Self-weight Preflex Girder (다단계 자중 프리플렉스 및 프리스트레싱 합성거더의 시공단계에 따른 휨성능 평가)

  • Choi, Byung Ho;Kim, Tae Bong;Park, Sung Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • This paper deals with the flexural performance of a composite girder system designed to readily form a composite section without a formwork and to easily realize multistage preflexing and prestressing. After a 3-Dimensional finite element modeling for construction stage analysis, the parametric numerical analysis was performed to analyse the stress distribution on the composite girder sections and the prestressing effects along with concrete pouring method and strand tensioning method. Based on the stress distribution analysis, a favorable construction stage model has been rationally chosen and then the ultimate flexural strengths were evaluated to conduct a comparative study, which exceed the nominal flexural strength suggested by the current design specification(ASD). It can be concluded that the proposed composite girder and fabrication procedure should have a sufficient structural performance.

Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method (단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석)

  • Sung Won-Jin;Kim Jeong-Hyeon;Lee Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.155-162
    • /
    • 2004
  • An analytical method to predict the time dependent flexural behavior of composite girder is presented based on sectional analysis. The time dependent constitutive relation accounting for the early-age concrete properties including maturing of elastic modulus, creep and shrinkage is derived in an incremental format by the first order Taylor series expansion. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girder which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The calculated results are compared with those by finite element analysis results. Close agreement is observed between the two approaches.

A Study on the Applicability of SCP Girder to Continuous Bridges (SCP 합성거더의 연속교 적용에 관한 연구)

  • Kim, Jung Ho;Lee, Sang Yoon;Park, Kyung Hoon;Hwang, Yoon Koog;Yoo, Gun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • The SCP girder, which compensates for the shortcomings of conventional girders through the effective composition of concrete, steel, and PS tendon, has recently been developed and applied on real bridges. Developed as a simple-support type, it may be applied on simple-support and continuous bridges by connecting the simple-support SCP girders to the interior supports. A continuous SCP girder, which has structural and cost advantages over the simple-support SCP girder, is proposed in this study. Likewise proposed herein is a new method of constructing a continuous SCP girder, using segments of the girder sequentially. A two-span, half-scale specimen was designed and constructed to verify the propriety of the continuous SCP girder bridge. A static load test was also carried out, using this specimen, to examine the behavior of the continuous SCP girder. Based on the results of the study, it is expected that the continuous bridge that uses the continuous SCP girder can guarantee the structural safety of the simple-support SCP girder.

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.

A Numerical Study on Load Distribution Factors for Simplified Composite H-Beam Panel Bridges (강합성 초간편 H형강 교량의 하중분배계수에 관한 해석적 연구)

  • Park, Jong Sup;Kim, Jae Heung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The load distribution factor (LDF) values of simplified composite H beam panel bridges (SCHPBs) that were subjected to one lane and two lane loads were investigated using three dimensional finite element analyses with the computer program ABAQUS (2007). This study considered some design parameters such as the slab thickness, the steel plate thickness, the span length, and the continuity of the SCHPBs in the development of new LDFs. The distribution values that were obtained from these analyses were compared with those from the AASHTO Standard, LRFD, and the equations presented by Tarhini and Frederick, Huo et al., Back and Shin, and Cai. The AASHTO Standard distribution factors for SCHPBs were found to be very conservative. Sometimes, the distribution values from the finite element analyses for interior girders were similar to the results of the AASHTO LRFD, whereas the values for exterior girders were conservative in most cases. The new distribution values that were presented in this study produced LDFs that are more conservative than those from the finite element method. For the simple application of the design to SCHPBs, bridge engineers can use 0.42 for the interior girder and 0.32 for the exterior girder. The proposed values improve the current design procedure for the LDF problem and increase SCHPB design efficiency.