• Title/Summary/Keyword: Composite steel bridge

Search Result 481, Processing Time 0.023 seconds

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

Development of Steel Composite Cable Stayed Bridge Weigh-in-Motion System using Artificial Neural Network (인공신경망을 이용한 강합성 사장교 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.799-808
    • /
    • 2008
  • The analysis of vehicular loads reflecting the domestic traffic circumstances is necessary for the development of adequate design live load models in the analysis and design of cable-supported bridges or the development of fatigue load models to predict the remaining lifespan of the bridges. This study intends to develop an ANN(artificial neural network)-based Bridge WIM system and Influence line-based Bridge WIM system for obtaining information concerning the loads conditions of vehicles crossing bridge structures by exploiting the signals measured by strain gauges installed at the bottom surface of the bridge superstructure. This study relies on experimental data corresponding to the travelling of hundreds of random vehicles rather than on theoretical data generated through numerical simulations to secure data sets for the training and test of the ANN. In addition, data acquired from 3 types of vehicles weighed statically at measurement station and then crossing the bridge repeatedly are also exploited to examine the accuracy of the trained ANN. The results obtained through the proposed ANN-based analysis method, the influence line analysis method considering the local behavior of the bridge are compared for an example cable-stayed bridge. In view of the results related to the cable-stayed bridge, the cross beam ANN analysis method appears to provide more remarkable load analysis results than the cross beam influence line method.

Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 아치구조를 이용한 가교 시스템 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.

Effects of tendon damage on static and dynamic behavior of CFTA girder

  • Vu, Thuy Dung;Lee, Sang Yoon;Chaudhary, Sandeep;Kim, Dookie
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.567-583
    • /
    • 2013
  • Experimental studies and finite element analyses have been carried out to establish the effect of tendon damage on the structural behavior of concrete filled tubular tied arch girder (CFTA girder). The damage of tendon is considered in different stages by varying the number of damaged cables in the tendon. Static and dynamic structural parameters are observed at each stage. The results obtained from the experiments and numerical studies have been compared to validate the studies. The tendons whose damage can significantly affect the stiffness of the CFTA girder are identified by performing the sensitivity analysis. The locations in the girder which are sensitive to the tendon damage are also identified.

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

Strengthening Design Using Rating Factor Considering Increment of Tendon Force for Two-Span Steel-concrete Composite Bridges Strengthened by Straight External Tendons (직선배치된 외부 긴장재로 보강된 2경간 강합성교의 증가 프리스트레스력을 고려한 내하율 산정식을 이용한 보강설계)

  • Choi, Dong-Ho;Yoo, Hoon;Kim, Yong-Sik;Kim, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.153-164
    • /
    • 2009
  • In this paper, a method of increasing in load-carrying capacity is shown in two-span steel-concrete composite bridges strengthened by external tendons. An analytic expression for the increment of tendon force under external loads is derived using virtual work method for straight external tendons and a new rating factor equation is proposed. Considering the initial tendon force and its increment under external loads, an analytic procedure has been developed to calculate the number of tendons and the initial tendon force from the proposed rating factor equation. This method is used to verify a validity and rationality for an existing two-span composite steel-concrete bridge.