• Title/Summary/Keyword: Composite steel bridge

Search Result 477, Processing Time 0.029 seconds

Effects of Design Parameters of Steel-Embedded Precast Composite Piers (강재매입형 조립식 합성교각의 설계 변수 영향)

  • Shim, Chang-Su;Lim, Hyun-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.53-54
    • /
    • 2009
  • Steel-embedded composite piers provide flexible design alternatives to satisfy the required performance due to various design parameters of composite sections. For the fast construction of composite piers, bolt connection can be utilized for small size piers and post-tensioning to the pier segments for the large size piers. In this paper, experimental results on composite piers were investigated to evlauate the effects of design parameters on the behavior of composite piers. Appropriate sections and their integration methods were suggested according to the design conditions. For the modular construction of bridge piers, pier segments need to be divided considering their weight and careful considerations on details to adjust fabrication and construction error. Connection details for the pier cap were also proposed.

  • PDF

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

Temporary Stabilizing Measures during Construction of a Steel Composite 2-Edge Girder Cable Stayed Bridge (강합성 2주형 사장교의 시공중 내풍 안정성 확보 방안 연구)

  • Kim, Young-Min;Kim, Dae-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.63-66
    • /
    • 2008
  • The bridge deck section composed of a concrete slab resting on two I-beam girders are known to be susceptible to flutter instability and vortex shedding. Moreover, the cable stayed bridge in construction is more vulnerable to wind rather than in service when the free cantilever construction method is applied. This paper describes the effect of the dynamic wind loads on the bridge during construction and the effect of alternative temporary stabilizing measures. Therefore, a series of wind tunnel tests and numerical analysis were carried out to determine if any countermeasures were required.

  • PDF

IMPLEMENTATION OF PRODUCT DATA MANAGEMENT SYSTEM FOR DESIGN OF BRIDGE STRUCTURES

  • Jin-Suk Kang;Seung-Ho Jung;Yoon-Bum Lee;Kwang-Myong Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1318-1323
    • /
    • 2009
  • In recent years, dramatic advances in information technology have motivated the construction industry to improve its productivity. Computer-based information technology includes Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Enterprise Resource Planning (ERP), Digital Mock-Up (DMU) and Product Data Management (PDM). Most construction industries are trying to apply these technologies for quality improvement, reduction of construction time and cost. PDM is very useful for managing data and process related to product design and manufacturing. PDM system has various functions such as drawing and engineering document management, product structure and structure modification management, part classification management, workflow management, and project management. In this paper, PDM system was applied to the design of steel-concrete composite girder bridge. To make a practical guidance for PDM implementation to bridge design, the procedure for its implementation was presented. Consequently, this paper could be useful to enhance the efficiency of bridge design.

  • PDF

Design Thermal Loads In Composite Box Girder Bridges (합성형교량의 설계온도하중)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.537-551
    • /
    • 1998
  • The intention of this paper is to provide realistic values of design thermal loads applicable to composite box girder bridges on the basis of the statistical analysis of long-term measured temperature data. For this purpose, temperatures were recorded at a newly constructed composite box girder bridge during about 20 months. Before analyzing the extreme values, major thermal loading parameters that characterize the temperature profile are defined, and a seasonal behavior of those is examined in detail. The limit distributions of the thermal loading parameters are then determined by the tail-equivalence method, and the thermal loading parameters corresponding to selected return period are calculated. Finally, the results are compared to the specifications suggested in a current design code for thermal loads, and it is concluded that the current design code is unsuitable for representing the self-equilibrated thermal stresses in composite bridges, and the horizontal temperature difference which is not suggested in current design code should be taken Into account in particular cases.

  • PDF

The Estimation of Stress Variationdue to Creep and Shrinkage on Composite Girder Section (크리프 및 건조수축에 의한 합성거더 단면의 응력변화 추정)

  • Kim, Byung-Kyu;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.357-360
    • /
    • 2006
  • Under sustained load, the stress variation occurs due to creep and shrinkage of concrete on the sections of steel-concrete composite girders. In standard specification for highway bridge, the method of stress estimation considering time effects is based on the concept of Yassumi method. In this study, comparing the analysis results using the AEMM and Yassumii method long-term behaviors, the rationality of specified requirements is checked.

  • PDF

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.