• Title/Summary/Keyword: Composite sampling method

Search Result 53, Processing Time 0.026 seconds

Improvement of Verification Method for Remedial Works through the Suggestion of Indicative Parameters and Sampling Method (정화 보조지표와 시료 채취 방법 제안을 통한 토양정화검증 제도 개선 연구)

  • Kwon, Ji Cheol;Lee, Goontaek;Kim, Tae Seung;Yoon, Jeong-Ki;Kim, Ji-in;Kim, Yonghoon;Kim, Joonyoung;Choi, Jeongmin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.179-191
    • /
    • 2016
  • In addition to the measurement of the concentration of soil contaminants, the new idea of indicative parameters was proposed to validate the remedial works through the monitoring for the changes of soil characteristics after applying the clean up technologies. The parameters like CFU (colony forming unit), pH and soil texture were recommended as indicative parameters for land farming. In case of soil washing, water content and the particle size distribution of the sludge were recommended as indicative parameters. The sludge is produced through the particle separation process in soil washing and it is usually treated as a waste. The parameters like water content, organic matter content, CEC (cation exchange capacity) and CFU were recommended as indicative parameters for the low temperature thermal desorption method. Besides the indicative parameter, sampling methods in stock pile and the optimal minimum amount of composite soil sample were proposed. The rates of sampling error in regular grid, zigzag, four bearing, random grid methods were 17.3%, 17.6%, 17.2% and 16.5% respectively. The random grid method showed the minimum sampling error among the 4 kinds of sampling methods although the differences in sampling errors were very little. Therefore the random grid method was recommended as an appropriate sampling method in stock pile. It was not possible to propose a value of optimal minimum amount of composite soil sample based on the real analytical data due to the dynamic variation of $CV_{fund{\cdot}error}$. Instead of this, 355 g of soil was recommended for the optimal minimum amount of composite soil sample under the assumption of ISO 10381-8.

A composite estimator for stratified two stage cluster sampling

  • Lee, Sang Eun;Lee, Pu Reum;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • Stratified cluster sampling has been widely used for effective parameter estimations due to reductions in time and cost. The probability proportional to size (PPS) sampling method is used when the number of cluster element are significantly different. However, simple random sampling (SRS) is commonly used for simplicity if the number of cluster elements are almost the same. Also it is known that the ratio estimator produces a good performance when the total number of population elements is known. However, the two stage cluster estimator should be used if the total number of elements in population is neither known nor accurate. In this study we suggest a composite estimator by combining the ratio estimator and the two stage cluster estimator to obtain a better estimate under a certain population circumstance. Simulation studies are conducted to compare the superiority of the suggested estimator with two other estimators.

Probabilistic Evaluation of Voltage Quality on Distribution System Containing Distributed Generation and Electric Vehicle Charging Load

  • CHEN, Wei;YAN, Hongqiang;PEI, Xiping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1743-1753
    • /
    • 2017
  • Since there are multiple random variables in the probabilistic load flow (PLF) calculation of distribution system containing distributed generation (DG) and electric vehicle charging load (EVCL), a Monte Carlo method based on composite sampling method is put forward according to the existing simple random sampling Monte Carlo simulation method (SRS-MCSM) to perform probabilistic assessment analysis of voltage quality of distribution system containing DG and EVCL. This method considers not only the randomness of wind speed and light intensity as well as the uncertainty of basic load and EVCL, but also other stochastic disturbances, such as the failure rate of the transmission line. According to the different characteristics of random factors, different sampling methods are applied. Simulation results on IEEE9 bus system and IEEE34 bus system demonstrates the validity, accuracy, rapidity and practicability of the proposed method. In contrast to the SRS-MCSM, the proposed method is of higher computational efficiency and better simulation accuracy. The variation of nodal voltages for distribution system before and after connecting DG and EVCL is compared and analyzed, especially the voltage fluctuation of the grid-connected point of DG and EVCL.

Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process (쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교)

  • Baek, Jong-Bae;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.564-573
    • /
    • 2014
  • Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.

Simulated Annealing for Overcoming Data Imbalance in Mold Injection Process (사출성형공정에서 데이터의 불균형 해소를 위한 담금질모사)

  • Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.233-239
    • /
    • 2022
  • The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.

Design of an improved STT missile digital autopilot with respect to sampling time (샘플링 시간에 대해 개선된 Singular Perturbation 기반 STT missile 디지털 autopilot 설계)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.468-471
    • /
    • 1997
  • In this paper, we investigate the time-sampling effects on the digital implementation of singular perturbation based STT autopilot with excellent performance and propose a compensation method for the time-sampling effects. In digitization of analog STT autopilot, it is found that the stability margin of the fast dynamics is mostly affected to lead to rapid decrease. Under the this analysis, a composite digital controller with additional compensator for fast dynamics is proposed to improve the time-sampling effect and a simulation verifies the result.

  • PDF

Optimization of Boss Shape for Damage Reduction of the Press-fitted Shaft End (압입축 끝단의 손상저감을 위한 보스부 형상 최적설계)

  • Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.85-91
    • /
    • 2015
  • The press-fit shaft is an important part used in automobiles, vessels, and trains. This study proposes an optimized design method to reduce damage that may occur in the press-fitted shaft by modifying the shape of the boss step of the press-fitted shaft. To reduce the time and cost of running the optimized design method, an approximate design optimization is applied and an optimized algorithm is generated using a genetic algorithm that is widely used in engineering fields and an approximate model using a response surface method. The planned experiments for the data that are needed to generate the approximate model use a central composite design (CCD) and Latin hypercube sampling (LHS), and the results of the approximate optimization using the above two design of experiments are to be compared.

A Composite Estimator for the Take-Nothing Stratum of Cut-Off Sampling (복합추정량을 이용한 절사표본 총합 추정에 관한 연구)

  • Kim, Ji-Hak;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1115-1128
    • /
    • 2011
  • Cut-off sampling that discards a part of the population from the sampling frame, is a widely used method for a highly skewed population like a business survey. Usually to the estimate of population total, we need to estimate the total of the take-nothing stratum. Many estimators have been developed to estimate the total of the take-nothing stratum. In this paper, we suggest a new composite estimator which combines the estimator suggested by Sarndal et al. (1992) and a ratio estimator obtained by small samples from the take-nothing stratum. Small simulation studies are performed for the comparison of the estimators and we confirm that the new suggested estimator is superior to the others.

An Efficient Brownian Motion Simulation Method for the Conductivity of a Digitized Composite Medium

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.545-561
    • /
    • 2003
  • We use the first-passage-time formulation by Torquato, Kim and Cule [J. Appl. Phys., Vol. 85, pp. 1560∼1571 (1999) ], which makes use of the first-passage region in association with the diffusion tracer's Brownian movement, and develop a new efficient Brownian motion simulation method to compute the effective conductivity of digitized composite media. By using the new method, one can remarkably enhance the speed of the Brownian walkers sampling the medium and thus reduce the computation time. In the new method, we specifically choose the first-passage regions such that they coincide with two, four, or eight digitizing units according to the dimensionality of the composite medium and the local configurations around the Brownian walkers. We first obtain explicit solutions for the relevant first-passage-time equations in two-and three-dimensions. We then apply the new method to solve the illustrative benchmark problem of estimating the effective conductivities of the checkerboard-shaped composite media. for both periodic and random configurations. Simulation results show that the new method can reduce the computation time about by an order of magnitude.

A Composite Estimator for Cut-off Sampling using Cost Function (절사표본 설계에서 비용함수를 고려한 복합추정량)

  • Sim, Hyo-Seon;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.43-59
    • /
    • 2014
  • Cut-off sampling has been widely used for a highly skewed population like a business survey by discarding a part of the population, so called a take-nothing stratum. For a more accurate estimate of the population total, Hwang and Shin (2013) suggested a composite estimator of a take-nothing stratum total that combined the survey results of a take-nothing stratum and a take-some sub-stratum (a part of take-some stratum). In this paper we propose a new cut-off sampling scheme by considering a cost function and a composite estimator based on the proposed sampling scheme. Small simulation studies compared the performances of known composite estimators and the new composite estimator suggested in this study. We also use Briquette Consumption Survey data for real data analysis.