• Title/Summary/Keyword: Composite right/left-handed transmission line

Search Result 69, Processing Time 0.025 seconds

Dual-Wideband Bandpass Filter Using Distributed Composite Right/Left-Handed Transmission Line Quad-Mode Resonators (분산 CRLH 전송선로 4중 모드 공진기를 이용한 이중-광대역 대역통과 여파기 설계)

  • Sung, Gyuje;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.84-89
    • /
    • 2017
  • This paper presents a dual-wideband bandpass filter (BPF) with high band-to-band isolation and skirt selectivity using distributed composite right/left-handed (CRLH) transmission line (TL) quad-mode resonators (QMRs). The results of the proposed distributed CRLH TL unit cell analysis are used to establish the scattering parameters and the resonance frequencies of the QMR constituting the dual-wideband BPF. A novel dual-wideband bandpass filter is designed and fabricated, using the derived scattering characteristics. The measured results show that the fabricated dual-wideband bandpass filter has an insertion loss of less than 1.08dB in the lower band, and of 2.01dB in the upper band, a bandwidth of 2.8-5.52GHz and 9.68-12.26GHz, and a band-to-band isolation of more than 38dB, from 6.34-8.42GHz.

Resonance Frequency and Bandwidth of the Negative/Positive nth Mode of a Composite Right-/Left-Handed Transmission Line

  • Kim, Seong-Jung;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, the analytic expression for the positive/negative $n^{th}-Mode$ resonance frequency of an N unit cell composite right-/lefthanded (CRLH) transmission line is derived. To explain the resonance mechanism of the $n^{th}$ mode, especially for the negative mode, the current distribution of the N unit cell CRLH transmission line is investigated with a circuit simulation. Results show that both positive and negative $n^{th}$ resonance modes have n times current variations, but their phase difference is $180^{\circ}$ as expected. Moreover, the positive $n^{th}$ resonance occurs at a high frequency, whereas the negative $n^{th}$ resonance transpires at a low frequency, thus indicating that the negative resonance mode can be utilized for a small resonator. The correlation between the slope of the dispersion curve and the bandwidth is also observed. In sum, the balanced condition of the CRLH transmission line provides a broader bandwidth than the unbalanced condition.

Dual-Mode Balanced Filter in Symmetric Composite Right/Left-Handed Transmission Line Structure (CRLH 전송선로 대칭구조의 이중모드 평형 필터)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2013
  • In this paper, a dual-mode balanced filter with symmetric coupled composite right/left-handed transmission line is introduced. Unlike the other symmetric structure, this configuration has the ability to operate under both common- and differential-mode excitation. These properties are achievable through providing physical short circuit by means of ground vias at the center of each unit-cell along the symmetry plane of the structure. Because the CRLH unit-cells are operated under both common- and differential-mode excitation, we implemented a balanced filter using these properties. To validity these features, a five-cell four port coupled CRLH-TL is simulated, fabricated and measured and the obtained performances agree with the simulation results under both common- and differential-mode excitation.

Dual-Band VCO using Composite Right/Left-Handed Transmission Line and Tunable Negative Resistanc based on Pin Diode (Composite Right/Left-Handed 전송 선로와 Pin Diode를 이용한 조절 가능한 부성 저항을 이용한 이중 대역 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.16-21
    • /
    • 2007
  • In this paper, the dual-band voltage-controled oscillator (VCO) using the composite right/left-handed (CRLH) transmission line (TL) and the tunable negative resistance based on the fin diode is presented. It is demonstrated that the CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the phase slope of the CRLH TL, and the frequency ratio of the two operating frequencies can be a non-integer. Each frequency band of VCO has to operate independently, so we have used the tunable negative resistance based on the pin diode. When the forward bias has been into the pin diode, the phase noise of VCO is $-108.34\sim-106.67$ dBc/Hz @ 100 kHz in the tuning range, $2.423\sim2.597$ GHz, whereas when the reverse bias has been fed into the pin diode, that of VCO is $-114.16\sim-113.33$ dBc/Hz @ 100 kHz in the tuning range, $5.137\sim5.354$ GHz.

High Pass Filter Design Using Folded Coplanar Waveguide CRLH Transmission Line

  • Yang, Lei;Yang, Doo-Yeong
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • A novel unit cell for a high pass filter was designed based on a composite right/left-handed structure that uses a folded coplanar waveguide. The equivalent circuit model for the unit cell was extracted from the geometry of the unit cell, and the effect of each main parameter of the unit cell was analyzed. The equations to calculate the immittance values of the equivalent circuit elements were formulated, and moreover, the dispersion characteristics and energy the distributions of the electromagnetic fields were simulated to determine the characteristics of the composite right/left-handed structure. Finally, the high pass filters were implemented as a series of the proposed unit cells. We show that the experimental results were in good agreement with those obtained from the simulation. Thus, the high pass filter was found to achieve a baseband insertion loss of 3 dB and a stopband attenuation of 70 dB.

Dual-Band Stop Filter Using Metamaterial TLs (Metamaterial 전송선을 이용한 이중 대역 저지 필터)

  • Oh, Hee-Seok;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.124-128
    • /
    • 2009
  • This raper proposes a dual-bandstop filter, which is based on a metamaterial transmission line using the composite right/left-handed (CRLH) and dual composite right/left-handed (D-CRLH) structures. The metamaterial structure is used for miniaturization and dual-bandstop operation at the TDMB frequency range (195 MHz) and DVB-T/H frequency range (670 MHz). The size of the proposed filter is $30{\times}15\;mm$, and the -10 dB bandstop fractional bandwidth is approximately 73 % and 50 % at each frequency, respectively.

Composite Right/Left Handed(CRLH) Transmission Line with Controllable Transmission Zeros (제어 가능한 전송 영점을 갖는 CRLH 전송 선로)

  • Lee, Ja-Hyeon;Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.583-590
    • /
    • 2010
  • In this paper, a novel CRLH-TL unit cell with controllable transmission zeros was proposed. Proposed composite right/left handed transmission line(CRLH-TL) unit cell is implemented in the form of the metal-insulator-metal(MIM) capacitors, the microstrip stub inductors, and the co-planar waveguide(CPW) inductor. And this proposed CRLH-TL generates two transmission zeros in lower/upper passband by the effort of electromagnetic couplings between each MIM capacitors and microstrip stub inductors. Using this proposed CRLH-TL, broad bandpass filter for UWB system was designed and fabricated. The measured results reveal that the two transmission zeros are observed in lower/upper passband and the overall size of the filter, excluding the feed line is about 8 mm$\times$8 mm, less then $\lambda_g$/4 on electric size.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Balanced Mixer Based on Composite Right/Left-Handed Transmission Line Leaky-Wave Antenna (CRLH 전송 선로 리키 웨이브 안테나를 이용한 평형 믹서)

  • Kim, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.985-991
    • /
    • 2008
  • This paper presents a novel balanced mixer receiver front-end design based on a metamaterial structure applicable to differential-/common-mode excitation. This metamaterial structure functions as a leaky-wave antenna and provides in-trinsic common-mode suppression. Low LO leakage and high RF to LO isolation are achieved without additional filters for LO and RF paths. The metamaterial is based on a unit-cell which under a differential-mode excitation behaves like a composite right/left-handed(CRLH) metamaterial. In contrast, the metamaterial unit-cell is below cut-off under a common-mode excitation. Experimental results are used to verify the proposed metamaterial's differential-/common-mode characteristics. The metamaterial is integrated with a balanced mixer design resulting in an operation frequency range of $1.96{\sim}2.40$ GHz with an optimum mixer conversion loss of 21.1 dB at 2,4 GHz.

Design of A Dual Band Branch Line Coupler Using a CRLH Transmission Line Structure (CRLH 전송선로 구조를 이용한 이중대역 브랜치 라인 커플러 설계)

  • Park, Min-Woo;Koo, Ja-Kyung;Lim, Jong-Sik;Jeong, Yong-Chae;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2462-2467
    • /
    • 2009
  • This paper proposes a dual band branch line coupler (BLC) using a composite right/left handed (CRLH) transmission line. The existing dual band BLCs with open stubs require hundreds of line impedance for the open stub as the frequency bands approach to each other, so it has been almost impossible to realize them. However in the proposed BLC, a CRLH transmission line replaces the open stub with an extremely high line impedance so that the BLC circuit may be realized even two frequencies are close to each other. As an example, a dual band BLC operating at 1800MHz and 2300MHz (the frequency ratio is 1:1.28) is designed and measured. Open stubs with $560\Omega$ line impedance are replaced by CRLH transmission lines for realizing the dual band BLC. The measured performances prove that the dual band operation is well acceptable and the proposed design method is successful even the ratio between two frequencies is not around two nor more.