• 제목/요약/키워드: Composite particle

검색결과 813건 처리시간 0.03초

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직 (Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process.)

  • 김택수;이병택;조성석;천병선
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2003
  • Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

Prepartion and Characterization of the Pt doped $TiO_2$ Membranes

  • Bae, Dong-Sik;Han, Kyong-Sop;Choi, Sang-Hael
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.52-56
    • /
    • 1997
  • The Pt doped $TiO_2$ composite membranes were prepared by the sol-gel process. The Pt doped titania sol was peptized with hydrochloric acid in the pH range of 1.23 to 1.32 at 5$0^{\circ}C$. The average particle size of the Pt doped titania sol was shown to be below 15nm and well dispersed in the solution. XPS show the Pt elements continuous and homogeneous dispersed in the $TiO_2$ membrane. The mean particle size of the Pt doped $TiO_2$ composite membrane has smaller than that of the undoped $TiO_2$ composite membrane. The average pore size of the Pt doped $TiO_2$ composite membrane was increased from 58 to 193 $\AA$ with firing temperature changed from 550 to 85$0^{\circ}C$. It was observed that the Pt doped $TiO_2$ composite membranes showed crack-free and homogeneous microstructue as well as narrow particle size distribution up to above 75$0^{\circ}C$.

  • PDF

EFFECTS OF AP PARTICLE SIZE IN COMPOSITE PROPELLANT COMBUSTION

  • Lee, S. T.;S. W. Hong;K. H. Yoo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1993년도 제1회 학술강연회논문집
    • /
    • pp.4-11
    • /
    • 1993
  • Composite propellant combustion is studied experimentally with systematic variation of particle sizes and mix ratios of coarse and fine APs. Considering the different modes of oxidizer-fuel flames in heterogeneous systems, the complex flame model is described to identify what combustion mechanisms are important under what conditions. The effects of AP particle size, ratio of coarse to fine AP, and pressure on burning rates are discussed in terms of qualitative theory of flame microstructure.

  • PDF

SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성 (Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Squeeze Casting법에 의해 제조된 A356/coated SiC복합재료의 미세조직과 기계적 특성에 관한 연구 (A Study on Microstructures and Mechanical Properties of A356/coated SiC Composites Fabricated by Squeeze Casting)

  • 이경구;이도재
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.429-437
    • /
    • 1994
  • Influence of interfacial structure between matrix and particle in A356/coated SiC composite fabricated by squeeze casting method was studied. Experimental variables are types of coated metallic film on SiC particles such as Cu, Ni-P, and applied pressure for squeeze casting. It was found that coating treatment on SiC particles improves the wetting of liquid A356 alloy on SiC particles. SiC particle distribution is very homogeneous in A356 matrix alloy which is fabricated by squeeze casting. Analysing the surface morphology of fractured A356/coated SiC, it was concluded that metallic thin film by coating treatment on SiC particle improves the interfacial bonding between particle and matrix, and so does on mechanical properties such as tensile strength. However, there was on significant difference in hardness between those composite made of as-received SiC particle and coated SiC particle.

  • PDF

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q.;Khoa, H.X.;Vieta, N.H.;Lee, Y.H.;Lee, B.H.;Kim, J.S.
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.338-344
    • /
    • 2013
  • Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향 (Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method)

  • 조경숙;이동현;김대성;임형미;김종엽;이승호
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.622-627
    • /
    • 2013
  • 콜로이달 실리카는 실리콘과 사파이어 웨이퍼의 정밀연마슬러리, 유-무기 하이브리드 코팅제, 정밀주조의 바인더 등 다양한 제품으로 사용되는 물질이다. 이러한 실리카 졸의 입자크기 및 분산 안정성은 웨이퍼의 표면, 코팅 막 혹은 벌크의 기계적, 화학적, 광학적 특성에 영향을 주기 때문에 정확한 측정값이 요구된다. 본 연구에서는 제조사에서 제시한 입자 크기 및 표면 특성이 다른 8종류 실리카 졸의 부피 분율에 따라 입자 크기, 졸 점도 및 입자 전기영동이동도의 측정결과에 미치는 영향을 논의하였다. 높은 표면활성을 지닌 실리카 입자의 특성 및 실리카 졸의 희석에 의한 안정화 이온 농도의 변화로 인해 실리카의 측정 입자 크기와 이동도는 졸의 부피 분율 혹은 입자 크기에 따라 변한다. 60 nm 보다 작은 입자는 부피 분율이 증가함에 따라 측정된 입자 크기가 증가한 반면에, 그 보다 큰 입자에서는 측정된 입자 크기가 감소하였다. 12 nm와 같이 작은 입자는 부피 분율이 증가함에 따라 점도가 상승하면서 측정 입자의 이동도가 감소한 반면에 100 nm의 큰 입자는 0.048의 낮은 부피 분율까지 이동도가 증가하다가 그보다 높은 부피 분율부터 감소하였다.

Mechanochemical Treatment of Quartz for Preparation of EMC Materials

  • Shin, Hee-Young;Chae, Young-Bae;Park, Jai-Koo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.315-324
    • /
    • 2001
  • Mechanochemical effects that occurred in the fine grinding process of quartz particles using planetary ball mill was investigated. Quartz particles have been frequently utilized for optical materials, semiconductor molding materials. We determined that grinding for a long time can be create amorphous structures from the crystalline quartz by Mechanochemical effects. But, to be produced nano-composite particles that the critical grinding time reached for composite materials in a short time. Henceforth, a qualitative estimation must be conducted on the filler for EMC(Epoxy molding compound) materials. It can be produced mechanochemically treated composite materials and also an integrated grinding efficiency considering of the nano-composite amorphous structured particles. The mechanochemical characteristics were evaluated based on particle morphology, size distribution, specific surface area, density and the amount of amorphous phase materials into the particle surface. The grinding operation in the planetary ball mill can be classified into three stages. During the first stage, initial particle size was reduced for the increase of specific surface area. In the second stage, the specific surface areas increased in spite of the increase in particle size. The final stage as a critical grinding stage, the ground quartz was considered mechanochemically treated particles as a nano- composite amorphous structured particles. The development of amorphous phase on the particle surface was evaluated by X-ray diffractometry, thermal gravity analysis and IR spectrometer. The amount of amorphous phase of particles ground for 2048 minutes was 85.3% and 88.2% by X-ray analysis and thermal gravity analysis, respectively.

  • PDF